nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.41 252-262
FBG-based study of in-situ strain and temperature evolution in prismatic cell
Email:
DOI: 10.19944/j.eptep.1674-8069.2025.02.008
English author unit:

China Energy Science and Technology Research Institute Co., Ltd.;School of materials science and engineering, Huazhong University of Science and Technology;

Abstract:

[Objective] Prismatic cells generate strains and heat during charging and discharging due to changes of theelectrodes' lattice structure and electro-chemical reactions, and such strains and heat have an important impact on keyindicators such as the state of charge, safety performance, and service life of the cells. [Methods] In order to monitorand analyze strain and temperature change more accurately, fiber bragg grating(FBG) technology is used to conduct anin-depth study on prismatic cells composed of lithium iron phosphate(LFP) and graphite, including the optimalapplication of FBG, the monitoring of single-electrode strain changes and correlation analysis with the changes in thecrystalline structure of the electrode material, and the application of FBG to monitor the temperature change of the cellmodule in the energy storage power station. [Results] The results show that using fiber optic strain gauges on the sideof the cell or indirectly monitoring the strain of the front of the cell through a fixture can stably capture the strain changeof the cell during cycling, and the strain during the cycling process is about 500 με on the front, and 50 με on the side.The change of the crystal lattice volume caused by lithium ions insertion and extraction is the fundamental cause of thechange of the cell strain. The cell side area has the most serious heat accumulation compared(3 ℃ higher). Theperformance of the FBG in temperature measurement accuracy is comparable to that of thermocouples but themultiplexing is better, which realizes the use of one optical fiber etched with two FBGs to monitor the temperaturechanges of two batteries. [Conclusion] Therefore, the FBG technology reveals the mechanism of strain andtemperature evolution in the cycling process of prismatic cells, and has a broad application prospect in the field ofbattery monitoring.

KeyWords: optical fiber sensors;electrochemical-mechanical behavior;lithium-ion batteries;fiber Bragg gratings;in-situ strain monitoring
References

[1]查浩.储能:电改及缺电背景下工商业储能迎来爆发[J].股市动态分析,2023,11:52-53.

[2] LEUNG P K, MORENO C, Masters I, et al. Real-time displacement and strain mappings of lithium-ion batteries using three-dimensional digital image correlation[J]. Journal of Power Sources, 2014, 271:82-86.

[2]窦真兰,张春雁,杨海涛,等.模块化多电平电池储能系统功率控制与均衡策略研究[J].电网与清洁能,2024,40(3):155-162.DOU Zhenlan, YANG Chunyan, YANG Haitao, et al. Research on the power control and equalization strategy of the modular multilevel battery energy storage system[J]. Power system and clean energy, 2024, 40(3):155~162.

[3]邓子豪,夏向阳,张嘉诚.磷酸铁锂电池优化多因子状态在线评估方法[J].电网与清洁能源[J], 2022, 38(3):90-96.DENG Zihao, XIA Xiangyang, Zhang Jiacheng. An optimized multi-factor online assessment method of SOH for LiFePO4batteries[J]. Power system and clean energy, 2022, 38(3):90-96.

[4]刘俊华,张启超,李程,等.磷酸铁锂电池模组健康度快速评估方法研究[J].电网与清洁能源[J], 2020, 36(10):112-118.LIU Junhua, ZHANG Qichao, LI Cheng, et al. A study on rapid evaluation methods of the SOH of the Health of lithium iron phosphate battery module[J]. Power system and clean energy, 2020,36(10):112-118.

[5]王志,唐云峰,熊雄,等.锂离子电池储能系统建模与控制策略研究[J].电网与清洁能源,2015,31(4):119-123.WANG Zhi, TANG Yunfeng, XIONG Xiong, et al. Li-ion battery energy storage system modeling and control strategy[J]. Power system and clean energy, 2015, 31(4):119-123.

[6]许守平,侯朝勇,胡娟,等.储能用锂离子电池管理系统研究[J].电网与清洁能源,2014,30(5):70-78.XU Shouping, HOU Zhaoyong, HU Juan, et al. Study on Li-ion battery management system of energy storage[J]. Power system and clean energy, 2014, 30(5):70-78.

[7]李建林.电池储能技术控制方法研究[J].电网与清洁能源,2012, 28(12):61-65.LI Jianlin. Study on control methods of battery energy storage technology[J]. Power system and clean energy, 2012, 28(12):61-65.

[8]王浩祥,秦小宇.新型电力系统背景下基于自适应参数估计电力系统惯量快速估计方法[J].电网与清洁能源, 2024, 40(1):18-28.WANG Haoxiang, QIN Xiaoyu. A fast estimation method of power system inertia based on adaptive parameter estimation under the background of new power system[J]. Power system and clean energy, 2024, 40(1):18-28.

[9]刘威,邓巍.基于RBF神经网络的主动配电网通信过程安全态势感知方法[J].电网与清洁能源,2024,40(5):52-58.LIU Wei, DENG Wei. A Security situation awareness method of active distribution network communication process based on rbf neural network[J]. Power system and clean energy, 2024, 40(5):52-58.

[10]王蓓,韩俊飞,李勇,等.基于智能监控平台的电网安全预警技术研究[J].电网与清洁能源,2023,39(6):33-38.WANG Bei, HAN Junfei, LI Yong, et al. Research on power grid security early warning technology based on intelligent monitoring platform[J]. Power system and clean energy, 2023, 39(6):33-38.

[11]袁斌,张皓维,崔萌萌.基于深度学习的电力基建现场安全管控系统[J].电网与清洁能源,2020,36(9):30-36.YUAN Bin, ZHANG Haowei, CUI Mengmeng. Deep learning based security and control system in power grid construction[J].Power system and clean energy, 2020, 36(9):30-36.

[12] LEUNG P K, MORENO C, MASTERS I, et al. Real-time displacement and strain mappings of lithium-ion batteries using three-dimensional digital image correlation[J]. Journal of Power Sources, Amsterdam, 2014, 271:82-86.

[13]段健健,沈宏芳,马聪聪,等.锂电池正极材料承烧用匣钵材料及其性能研究进展[J].现代技术陶瓷,2024,45(Z1):110-129.DUAN Jianjian, Hongfang Shen, Congcong Ma, et al. Progress of Saggar Material and its Properties for Cathode Materials of Lithium Batteries[J]. Advanced Ceramics, 2024, 45(Z1):110-129.

[14]杨建航,冯文婷,韩俊伟,等.锂/钠-氯二次电池的最新进展:从材料构建到性能评估[J].储能科学与技术,2024,13(6):1824-1834..Jianhang Yang, Wenting Ma, Junwei Han, et al. Recent advances in rechargeable Li/Na-Cl2 batteries:From material construction to performance evaluation[J]. Energy Storage Science and Technology, 2024, 13(6):1824-1834.

[15] WANG X M, SONE Y, SEGAMI G, et al. Understanding volume change in lithium-ion cells during charging and discharging using in situ measurements[J]. Journal of the Electrochemical Society,2007, 154(1):14–21.

[16]孟国栋,李雨珮,唐佳,等.锂离子电池储能电站的热失控状态检测与安全防控技术研究进展[J].高电压技术,2024,50(7):3105-3127.MENG Guodong, LI Yupei, TANG Jia , et al. Research progress of thermal runaway detection and safety control technology for lithium-ion battery energy storage power stations[J]. High Voltage Engineering, 2024, 50(7):3105-3127.

[17] CHEN D Y, ZHAO Q, ZHENG Y, et al. Recent progress in lithium-ion battery safety monitoring based on fiber bragg grating sensors[J]. Sensors, 2023, 23(12):5609.

[18] HUANG J Q, DELACOURT C, DESAI P, et al. Unravelling thermal and enthalpy evolutions of commercial sodium-ion cells upon cycling ageing via fiber optic sensors[J]. Journal of The Electrochemical Society, 2023, 170(9):090510.

[19]周丹华,徐朔寒,邱朗.基于主动标识的锂电池全生命周期安全管理技术策略研究[J/OL].电池工业,1-5.(2024-07-16)[2024-09-24]. http://kns. cnki. net/kcms/detail/32.1448. TM.20240617.0854.002.html.ZHOU Danhua, XU Shuohan, QIU Lang. Research on technical strategy of life cycle safety management of lithium battery based on active identification[J/OL]. Chinese Battery Industry, 1-5.(2024-07-16)[2024-09-24]. http://kns. cnki. net/kcms/detail/32.1448.TM.20240617.0854.002.html..

[20] YI Z X, CHEN Z L, YIN K, et al. Sensing as the key to the safety and sustainability of new energy storage devices[J]. Protection and Control of Modern Power Systems, 2023, 8(1):27.

[21] TAN K, LI W, LIN Z, et al. Operando monitoring of internal gas pressure in commercial lithium-ion batteries via a MEMSassisted fiber-optic interferometer[J]. Journal of Power Sources,2023, 580:233471.

[22]唐佳,于子轩,李雨珮,等.磷酸铁锂储能电池过充热失控的多参量特性分析及热失控抑制技术[J/OL].高电压技术,1-10.(2024-07-16)[2024-09-24]. https://doi. org/10.13336/j. 1003-6520.hve.20231441..TANG Jia, YU Zixuan, LI Yupei, et al. Overcharge thermal runaway multi-parameter characteristics and thermal runaway suppression technology of lithium iron phosphate energy storage battery[J/OL]. High Voltage Engineering, 1-10.(2024-07-16)[2024-09-24]. https://doi. org/10.13336/j. 1003-6520. hve.20231441.

[23] HAN S Y, LEE C, LEWIS J A, et al. Stress evolution during cycling of alloy-anode solid-state batteries[J]. Joule, 2021, 5(9):2450-2465.

[24] PAUL P P, CAO C T, THAMPY V, et al. Using in situ highenergy x-ray diffraction to quantify electrode behavior of li-ion batteries from extreme fast charging[J]. ACS Applied Energy Materials, 2021, 4(10):11590-11598.

[25] ZHAO Y, SPINGLER F B, PATEL Y, et al. localized swelling inhomogeneity detection in lithium ion cells using multidimensional laser scanning[J]. Journal of the Electrochemical Society, 2019, 166(2):27-34.

[26] SHI X L, SUN Y H, WENG Y B, et al. Operando chemical strain analysis of CNT/VOOH during zinc insertion for Zn-ion batteries[J]. Energy&Environmental Science, 2023, 16, 4670.

[27] RAGHAVAN A, KIESEL Peter, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1:Cell embedding method and performance[J]. Journal of Power Sources, 2017, 341:466-473.

[28]丁宝艳,赵强,陈东营,等.光纤布拉格光栅压力传感技术与应用进展[J].光通信研究,2024(3):75-86.DING Baoyan, ZHAO Qiang, CHEN Dongying, et al. Technology and Application progress of fiber bragg grating pressure sensing[J]. Study on Optical Communications, 2024, 3:75-86.

[29] LI Y P, ZHANG Y, LI Z, et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor[J]. Advanced Science, 2022, 9(26):2203247.

[30] XI J W, LI J Z, SUN H, et al. In-situ monitoring of internal temperature and strain of solid-state battery based on optical fiber sensors[J]. Sensors and Actuators A:Physical, 2022, 347:113888.

[31]史雯慧,王浩,曹慧,等.基于光纤布拉格光栅传感的锂电池内部状态原位监测[J].光子学报,2023,52(9):164-172.SHI Wenhui, WANG Hao, CAO Hui, et al. In-situ monitoring of the internal status of lithium batteries based on fiber bragg grating sensors[J]. Acta Photonica Sinica, 2023, 52(9):164-172.

[32] UNTERKOFLER J, SWASCHNIG P, GLANZ G, et al.Measurement of the internal temperature distribution of lithiumion pouch cells with fiber bragg grating sensors at realistic external compressive loads[J]. Journal of Energy Storage, 2024,98:113089.

[33] GHASHGHAIE S, BONEFACINO J, CHEUNG Y N, et al.Towards long-term monitoring of commercial lithium-ion batteries enabled by externally affixed fiber sensors and strainbased prognostic strategies[J]. Journal of The Electrochemical Society, 2024, 171(4):040515.

[34] HEBENBROCK A, ORAZOV N, BENGER R, et al. Innovative early detection of high-temperature abuse of prismatic cells and postabuse degradation analysis using pressure and external fiber bragg grating sensors[J]. Batteries, 2024, 10(3):92.

[35] SAHOTA J K, GUPTA N, DHAWAN D. Fiber bragg grating sensors for monitoring of physical parameters:A comprehensive review[J]. Optical Engineering, 2020, 59(6):060901.

[36] GUO J, ZHU K J, WU Q, et al. Microfiber sensor integrated inside solid-state lithium-metal batteries for reducing invasiveness[J].Journal of Power Sources, 2024, 599:234231.

[37] SU Y D, PREGER Y, BURROUGHS H, et al. Fiber optic sensing technologies for battery management systems and energy storage applications[J]. Sensors, 2021, 21(4):1397.

[38] HAN G C, YAN J Z, GUO Z, et al. A review on various optical fiber sensing methods for batteries[J]. Renewable&Sustainable Energy Reviews, 2021, 150:111514.

[39] ZHANG W J. Structure and performance of LiFePO4 cathode materials:A review[J]. Journal of Power Sources, 2011, 196(6):2962-2970.

[40] WANG L, QIU J Y, WANG X D, et al. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2):125-137.

[41] KOYAMA Y, UYAMA T, ORIKASA Y, et al. Hidden two-step phase transition and competing reaction pathways in LiFePO4[J].Chemistry of Materials, 2017, 29(7):2855-2863.

[42] JAKOB A, TOBIAS E, MATTHIAS K, et al. The success story of graphite as a lithium-ion anode material-fundamentals,remaining challenges, and recent developments including silicon(oxide)composites[J]. Sustainable Energy&Fuels, 2020, 4(11):5387-5416.

Basic Information:

DOI:10.19944/j.eptep.1674-8069.2025.02.008

China Classification Code:TM91;TP212

Citation Information:

[1]黄丹茹,葛筱渔,张怡等.光纤布拉格光栅原位监测揭示硬壳电池应变、温度演变机理研究[J].电力科技与环保,2025,41(02):252-262.DOI:10.19944/j.eptep.1674-8069.2025.02.008.

Fund Information:

国家自然科学基金项目(21801213)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search