nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.41 281-293
Numerical simulation study on the combustion characteristics of ultra-fine coal water slurry
Email: huangzhong@tsinghua.edu.cn;
DOI: 10.19944/j.eptep.1674-8069.2025.02.011
English author unit:

Shenhua Zhungeer Energy Co., Ltd.;Shanxi Research Institute for Clean Energy Tsinghua University;Department of Energy and Power Engineering, Tsinghua University;

Abstract:

[Objective]The clean and efficient utilization of coal resources is an essential requirement for constructingChina's new energy system. As an important component of clean coal technology, coal water slurry holds significantadvantages. Numerical simulation studies have been conducted on the combustion characteristics of ultra-fine coalwater slurry. [Methods] A three-dimensional model of the test platform was established, incorporating turbulence,radiation, combustion, and discrete phase models. The study analyzes how changes in operational parameters such asfuel concentration, particle size, atomization angle, total air volume, and the ratio of primary to secondary air affect thetemperature and velocity fields of the test platform.[Results] The results indicate that an increase in fuel concentrationraises the furnace temperature and accelerates combustion, leading to an earlier ignition point and shorter flames.changes in particle size have minimal impact on combustion. An increase in atomization angle significantly consolidatesthe high-temperature zones, showing a dispersal trend; an increase in total air volume gradually expands the ignitionrange of the flame and delays the ignition point. An increase in the ratio of primary to secondary air significantly skews the direction of the flame within the furnace. Thus, it is demonstrated that increasing fuel concentration and total air volume significantly enhances combustion efficiency, while appropriate adjustments to the atomization angle and air ratio help optimize the stability and efficiency of the combustion process. The numerical simulation has confirmed that the optimal combustion conditions should be selected with a fuel concentration of 50%, a fuel particle size of 30 μm, a atomization angle of 30°, a total air flow rate of 0.316 kg/s, and a primary-to-secondary air ratio of 3: 7. [Conclusion] These findings are significant for enhancing combustion efficiency and advancing the industrial application of ultra-fine coal water slurry.

KeyWords: ultrafine coal water slurry;combustion test platform;combustion characteristics;temperature field;velocity field;numerical simulation
References

[1]张松.新型能源体系下我国煤炭清洁高效利用途径研究[J].煤炭经济研究,2023,43(9):71-77.ZHANG Song. Study on clean and efficient utilization of coal in China under new energy system[J]. Coal Economic Research,2023,43(9):71-77.

[2]王圣.适应新型能源体系的煤炭清洁高效利用分析[J].环境保护,2023,51(11):32-35.WANG Sheng. Analysis of clean and efficient utilization of coal adapted to the new energy system[J]. Environmental Protection,2023,51(11):32-35.

[3]王双明,申艳军,宋世杰,等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023,48(7):2599-2612.WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the'dual carbon'goal[J]. Journal of China Coal Society,2023,48(7):2599-2612.

[4] YAN Shiying,XUAN Weiwei,CAO Chunyan,et al. A review of sustainable utilization and prospect of coal gasification slag[J].Environmental Research,2023,238(Pt 2):117186.

[5]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报,2021,46(7):2197-2211.XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197-2211.

[6]张国庆,张代鑫,李云妹,等.准格尔煤制备水煤浆的成浆性研究[J].煤炭科学技术,2023,51(增刊1):484-490.ZHANG Guoqing,ZHANG Daixin,LI Yunmei,et al. Slurryability of coal water slurry prepared with Jungar coal[J]. Coal Science and Technology,2023,51(S1):484-490.

[7]张国庆,李云妹,黄涌波,等.基于正交实验的准格尔煤水煤浆性能优化[J].煤炭转化,2023,46(4):20-27.ZHANG Guoqing,LI Yunmei,HUANG Yongbo,et al. Performance optimization of Jungar coal-water slurry based on orthogonal experiment[J]. Coal Conversion,2023,46(4):20-27.

[8]伍泽广,,孙俊民,张战军,等.准格尔煤田高铝煤炭资源特征初探[J].煤炭工程,2013,45(10):115-118.WU Zeguang,SUN Junmin,ZHANG Zhanjun,et al. Discussion on features of high alumina coal resources in Zhungeer coafield[J].Coal Engineering,2013,45(10):115-118.

[9]孙升林,吴国强,曹代勇,等.煤系矿产资源及其发展趋势[J].中国煤炭地质,2014,26(11):1-11.SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1-11.

[10]王东方,陈伟强.中国铝土矿贸易与供应安全研究[J].资源科学,2018,40(3):498-506.

[11]程春艳,于汶加,张佳东.中国铝原材料综合对外依存度分析[J].中国矿业, 2012,21(增刊1):217-220.CHENG Chunyan,YU Wenjia,ZHANG Jiadong. Analysis of aluminum raw materials dependence on foreign[J]. China Mining magazine,2012,21(S1):217-220.

[12]霍凤仙.利用准格尔地区粉煤灰生产氧化铝一体化项目的探讨[J].内蒙古科技与经济,2019(2):89-90.

[13]潘月军.新形势下我国煤炭资源高效清洁利用途径分析[J].洁净煤技术,2023,29(增刊2):807-809.PAN Yuejun. Analysis on the approaches of efficient and clean utilization of China's coal resources under the new situation[J].Clean Coal Technology,2023,29(S2):807-809.

[14] ROBINSON P J,LUYBEN W L. Simple dynamic gasifier model that Runs in Aspen dynamics[J]. Industrial&Engineering Chemistry Research,2008,47(20):7784–7792.

[15]张代鑫,张国庆,刘海军,等.水煤浆燃烧技术的最新研究进展与工程应用[J].电力学报,,2022,37(6):520-530.ZHANG Daixin,ZHANG Guoqing,LIU Haijun,et al. Recent research progress and engineering application of coal water slurry combustion technology[J]. Journal of Electric Power,2022,37(6):520-530.

[16]徐彤,何国锋,李磊.水煤浆制备、应用现状及其新进展[J].洁净煤技术,2021,27(6):42-52.XU Tong,HE Guofeng,LI Lei. Reseach status and prospect of preparation and application of coal water slurry[J]. Clean Coal Technology,2021,27(6):42-52.

[17]吕向阳.高浓度低阶煤水煤浆添加剂的筛选及应用[J].洁净煤技术,2018,24(4):54-59.LYU Xiangyang. Selection and application of additive for high concentration low rank coal water slurry[J]. Clean Coal Technology,2018,24(4):54-59.

[18]成志建,翟永军.70 MW超低排放燃水煤浆循环流化床锅炉开发[J].工业锅炉,2018(2):8-10+20.CHENG Zhijian,ZHAI Yongjun. Development of 70 MW ultra low emission coal water slurry fired CFB boiler[J]. Industrial Boilers,2018(2):8-10+20.

[19]孙云国,宋晓娜.新型水煤浆循环流化清洁燃烧技术节能效果研究[J].洁净煤技术,2019,25(增刊2):40-42.SUN Yunguo,SONG Xiaona. Energy saving anlysis on new skilled coal water slurry circulating fluidized bed boiler[J]. Clean Coal Technology,2019,25(S2):40-42.

[20]蒋煜,王磊,涂亚楠.水煤浆技术研究进展与发展趋势[J].煤炭工程,2020,52(5):27-32.JIANG Yu,WANG Lei,TU Yanan. Discussion on progress and development trend of coal water slurry technology[J]. Coal Engineering,2020,52(5):27-32.

[21]段清兵,张胜局,段静.水煤浆制备与应用技术及发展展望[J].煤炭科学技术,2017,45(1):205-213.DUAN Qingbin,ZHANG Shengju,DUAN Jing. Development outlook and preparation and application technology of coal water mixture[J].Coal Science and Technology,2017,45(1):205-213.

[22]徐志强,孙美洁,刘建强.水煤浆应用现状及技术进展[J].煤炭工程,2014,46(10):65-67.XU Zhiqiang,SUN Meijie,LIU Jianqiang. Application status and technology progress of coal water slurry[J].Coal Engineering,2014,46(10):65-67.

[23]张能,乔二浪,鲁得鹏,等.煤气化技术应用现状及发展趋势[J].化工设计通讯,2022,48(7):1-3.ZHANG Neng,QIAO Erlang,LU Depeng,et al. Application status and development trend of coal gasification technology[J]. Coal Cemical Methanol,2022,48(7):1-3.

[24]甄鹏,闫淑君,张乐,,等.纳米碳氢燃料燃烧及NOx排放特性研究[J].广东化工,2023,50(23):24-28.ZHEN Peng,YAN Shujun,ZHANG Le,et al. Research on the combustion and NOx emission characteristics of Nano Hydrocarbon fuel[J].Guangdong Chemical Industry,2023,50(23):24-28.

[25]黄涌波,杜善周.煤基纳米碳氢燃料技术研发与应用[J].中国煤炭,2023,49(9):51-56.HUANG Yongbo,DU Shanzhou. Research an application of coalbased nano hydrocarbon fuels technology[J].China Coal,2023,49(9):51-56.

[26]张传名.低品位水煤浆成浆、燃烧特性研究及应用[D].杭州:浙江大学,2009.ZHANG Chuanming. The studies on slurry ability, combustion characteristics and application of low-quality CWS[D].Hangzhou:Zhejiang University,2009.

[27]袁丹丹.水煤浆气化炉内气化过程数值模拟和分析[D].武汉:武汉科技大学,2016.YUAN Dandan. Numerical simulation and analysis of gasification process in coal water slurry gasifier[D].Wuhan:Wuhan University of Science and Technology,2016.

[28] MCHALE E T,SCHEFFEE R S,ROSSMEISSL N P. Combustion of coalwater slurry[J]. Combustion and Flame, 1982, 45:121-135.

[29] Yavuz R, Kü?ükbayrak S, Williams A. Combustion characteristics of lignite-water slurries[J]. Fuel,1998,77(11):1229-1235.

[30]莫日根.水煤浆在双锥逆喷燃烧器内着火特性的数值模拟研究[D].北京:煤炭科学研究总院, 2018.MO Rigen. Numerical simulation study on ignition characteristics of coal water slurry in dual cone reverse burner[D].Beijing:China Coal Research Institute,2018.

[31]王浩然.一种新型旋流燃烧器燃烧室内流动及燃烧数值模拟[D].哈尔滨:哈尔滨理工大学,2019.WANG Haoran. Numerical simulation of flow and combustion in combustion chamber of a new swirl burner[D]. Harbin:Harbin University of Science and Technology,2019.

[32]赵卫东.低阶煤水热改性制浆的微观机理及燃烧特性研究[D].杭州:浙江大学,2012.ZHAO Weidong. Micromechanism and combustion characteristics of low-rank coal water slurry upgraded by hot water treatments[D].Hangzhou:Zhejiang University,2012.

[33]张佳.采用旋流燃烧器300 MWe W火焰锅炉燃烧及NOx生成数值模拟[D].哈尔滨:哈尔滨工业大学,2012.ZHANG Jia. Numerical simulation of the combustion and NOx formation in a 300 MWe down-fired boiler with swirl burner[D].Harbin:Harbin University of Science and Technology,2012.

[34]房全国.水煤浆气化炉的数值模拟及优化研究[D].郑州:郑州大学,2014.

[35]于海龙,张桂芳,董向元,等.喷嘴入射角对水煤浆气化炉内冷态流场影响的数值模拟[J].中原工学院学报,2008,19(6):1-4.YU Hailong,ZHANG Guifang,DONG Xiangyuan,et al. Cold state numerical simulation of new type CWS gasifier[J].Journal of Zhongyuan University of Technology,2008,19(6):1-4.

[36]胡顺涛,李源,林旭.基于水煤浆燃烧的工业锅炉多场耦合数值模拟[J].青海科技,2021,28(3):72-77.

Basic Information:

DOI:10.19944/j.eptep.1674-8069.2025.02.011

China Classification Code:TQ534

Citation Information:

[1]原铎,王雨果,甄鹏等.超细水煤浆燃烧特性的数值模拟研究[J].电力科技与环保,2025,41(02):281-293.DOI:10.19944/j.eptep.1674-8069.2025.02.011.

Fund Information:

北京市杰出青年科学基金项目(JQ23010); 国能准能集团有限责任公司科技项目(CEZB230302113)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search