nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.41 183-193
Research progress of desulfurization technology in circulating fluidized bed boiler
Email: zhangguangxue@cjlu.edu.cn;
DOI: 10.19944/j.eptep.1674-8069.2025.02.002
English author unit:

College of Low Carbon Energy and Power Engineering, China University of Mining and Technology;College of Energy Environment and Safety Engineering, China Jiliang University;

Abstract:

[Objective] Circulating fluidized bed(CFB) boilers can achieve desulfurization during combustion by addingcalcium-based desulfurizer to the furnace, and the original emission concentration of SO_2 at the furnace outlet is low.However, in the face of increasingly stringent emission standards for air pollutants in thermal power plants, how tooptimize the furnace desulfurization process and consolidate the advantages of low-cost pollutant emission control ofCFB boilers is a very concerned issue in engineering. It is necessary to carry out a more in-depth understanding of theSO_2 generation and furnace desulfurization characteristics of CFB boilers. [Methods] This paper summarizes theinfluence of various design or operation parameters on the desulfurization efficiency in the furnace by combing therelevant research on the desulfurization in the furnace of CFB boiler in recent years, and puts forward the correspondingcontrol measures for the desulfurization in the furnace. [Results] The research shows that under the given desulfurizerand boiler load, improving the efficiency of the separator and the performance of the material circulation system, usingultra-fine limestone matching with the high-efficiency separator, reasonably designing and regulating the furnacetemperature(800~850 ℃) and oxygen content, determining the appropriate limestone feeding position, andappropriately increasing the calcium-sulfur ratio but not higher than 3.3, can effectively improve the desulfurizationefficiency in the furnace. Even under specific working conditions, it can directly meet the SO_2 ultra-low emissionstandards without relying on the tail flue gas desulfurization system. However, in-furnace desulfurization usually leads toan increase in NO_x emissions. When the calcium-sulfur ratio exceeds 2, the increase in boiler heat loss reduces theboiler efficiency. In addition, the increase in CaO and desulfurization products in fly ash also has a certain impact on thetail dust removal performance. [Conclusion] It is necessary to optimize the desulfurization performance of CFB boiler,and pay attention to the overall operation economy of the boiler..

KeyWords: circulating fluidized bed;SO_2;in-situ desulphurization;influencing factors
References

[1]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001.JIN Yong, ZHU Jingxu, WANG Zhanwen, et al. Fluidization engineering principles[M]. Beijing:Tsinghua University Press, 2001.

[2] LYU J F, YANG H R, LING W, et al. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler[J]. Frontiers in Energy, 2017, 13(1):114-119.

[3]火电厂大气污染物排放标准:GB 13223-2011[S].北京:中国环境科学出版社,2011.Emission standard of air pollutants for thermal power plants:GB13223-2011[S]. Beijing:China Environmental Press, 2011.

[4] KE X W, LI D F, ZHANG M, et al. Ash formation characteristics of two Indonesian coals and the change of ash properties with particle size[J]. Fuel Processing Technology, 2019, 186:73-80.

[5] KNUDSEN J N, JENSEN P A, LIN W, et al. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy&Fuels, 2004, 18(3):810-819.

[6]蔡毅.循环床炉内脱硫气氛效应与组合脱硫运行优化[D].杭州:浙江大学,2016.CAI Yi. Effect of atmosphere on in-situ desulpurization and operation optimization of an integrated desulphurization system with a CFB[D]. Hangzhou:Zhejiang University, 2016.

[7] LEI M, HUANG X Z, WANG C B, et al. Investigation on SO2, NO and NO2 release characteristics of Datong bituminous coal during pressurized oxy-fuel combustion[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3):1067-1075.

[8] SUGAWARA K, TOZUKA Y, SUGAWARA T, et al. Effect of heating rate and temperature on pyrolysis desulfurization of a bituminous coal[J]. Fuel Processing Technology, 1994, 37:73-85.

[9]柯希玮,蔡润夏,吕俊复,等.钙基脱硫剂对循环流化床NOx排放影响研究进展[J].洁净煤技术,2019,25(1):1-11.KE Xiwei, CAI Runxia, LYU Junfu, et al. Research progress of the effects of Ca-based sorbents on the NOx reaction in circulating fluidized bed boilers[J]. Clean Coal Technology, 2019, 25(1):1-11.

[10] DIAZ-BOSSIO L M, SQUIER S E, PULSIFER A H. Reductive decomposition of calcium sulfate utilizing carbon monoxide and hydrogen[J]. Chemical Engineering Science, 1985, 40(3):319-324.

[11] LYNGFELT A, LECKNER B. Sulphur capture in fluidized bed boilers:The effect of reductive decomposition of CaSO4[J].Chemical Engineering Journal, 1989, 40(2):59-69.

[12] MIAO Z, YANG H R, WU Y X, et al. Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds[J]. Industrial&Engineering Chemistry Research, 2012, 51(15):5419-5423.

[13] ZHAO S, YOU C F. The effect of reducing components on the decomposition of desulfurization products[J]. Fuel, 2016, 181:1238-1243.

[14] ANTHONY E J, GRANATSTEIN D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science, 2001, 27(2):215-236.

[15] LYNGFELT A, LANGER V, STEENARI B M, et al. Calcium sulphide formation in fluidized bed boilers[J]. The Canadian Journal of Chemical Engineering, 1995, 73(2):228-233.

[16] HANSEN P F B, JOHANSEN K D,?STERGAARD K. Hightemperature reaction between sulphur dioxide and limestone—V.The effect of periodically changing oxidizing and reducing conditions[J]. Chemical Engineering Science, 1993, 48(7):1325-1341.

[17] CAI R X, HUANG Y Q, LI Y R, et al. Effects of the limestone particle size on the sulfation reactivity at low SO2 concentrations using a LC-TGA[J]. Materials, 2019, 12(9):1-17

[18] SILCOX G D, KRAMLICH J C, PERSHING D W. A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles[J]. Industrial&Engineering Chemistry Research, 1989, 28(2):155-160.

[19] BORGWARDT R H. Calcination kinetics and surface area of dispersed limestone particles[J]. AIChE Journal, 1985, 31(1):103-111.

[20] FAN L S, JIANG P, AGNIHOTRI R, et al. Dispersion and ultrafast reaction of calcium-based sorbent powders for SO2 and air toxics removal in coal combustion[J]. Chemical Engineering Science, 1999, 54(22):5585-5597.

[21] ZARKANITIS S, SOTIRCHOS S V. Pore structure and particle size effects on limestone capacity for SO2 removal[J]. AIChE Journal, 1989, 35(5):821-830.

[22] HARTMAN M, COUGHLIN R W. Reaction of sulfur dioxide with limestone and the grain model[J]. AIChE Journal, 1976, 22(3):490-498.

[23] MARGARITA D L O-L, LUIS F D T, FRANCISCO G-L, et al.Modeling of limestone sulfation for typical oxy-fuel fluidized bed combustion conditions[J]. Energy&Fuels, 2013, 27(4):2266-2274.

[24]杨海瑞,WIRSUM M,吕俊复,等. CFB锅炉内物料停留时间的模型研究[J].热能动力工程,2003,18(2):143-146+214.YANG Hairui, WIRSUM M, LU Junfu, et al. Modeling research of residence time of materials in a circulating fluidized bed boiler[J].Journal of Engineering for Thermal Energy and Power, 2003, 18(2):143-146+214.

[25] SAASTAMOINEN J J. Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed[J]. Industrial&Engineering Chemistry Research, 2007, 46(22):7308-7316.

[26] MATTISSON T, LYNGFELT A. A sulphur capture model for circulating fluidized-bed boilers[J]. Chemical Engineering Science, 1998, 53(6):1163-1173.

[27]蔡润夏,柯希玮,葛荣存,等.循环流化床超细石灰石炉内脱硫研究[J].中国电机工程学报,2018,38(10):3042-3048+3155.CAI Runxia, KE Xiwei, GE Rongcun, et al. The in-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers[J]. Proceedings of the CSEE, 2018, 38(10):3042-3048+3155.

[28] CAI R X, KE X W, HUANG Y Q, et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers[J].Environmental Science&Technology, 2019, 53(22):13514-13523.

[29] CAI R X, ZHANG H, ZHANG M, et al. Development and application of the design principle of fluidization state specification in CFB coal combustion[J]. Fuel Processing Technology, 2018, 174:41-52.

[30] MULLIGAN T, POMEROY M, BANNARD J E. The mechanism of the sulphation of limestone by sulphur dioxide in the presence of oxygen[J]. Journal of the Energy Institute, 1989, 62:40-47.

[31] FUERTES A B, ALVAREZ D, RUBIERA F, et al. Surface area and pore size changes during sintering of calcium oxide particles[J]. Chemical Engineering Communications, 2007, 109(1):73-88.

[32]蔡润夏.基于粒度效应的循环流化床炉内高效脱硫技术研究[D].北京:清华大学,2019.CAI Runxia. Research on the high-efficiency desulfurization technology inside circulating fluidized bed furnaces based on the particle-size effects[D]. Beijing:Tsinghua University, 2019.

[33] TARELHO L A C, MATOS M A A, PEREIRA F J M A. The influence of operational parameters on SO2 removal by limestone during fluidised bed coal combustion[J]. Fuel Processing Technology, 2005, 86(12-13):1385-1401.

[34] BRAGANCA S R, CASTELLAN J L. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones[J]. Brazilian Journal of Chemical Engineering, 2009, 26(2):375-383.

[35] YUE G X, CAI R X, LYU J F, et al. From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China[J]. Powder Technology, 2016, 316:18-28.

[36] TARELHO L A C, MATOS M A A, PEREIRA F J M A. Axial and radial CO concentration profiles in an atmospheric bubbling FB combustor[J]. Fuel, 2005, 84(9):1128-1135.

[37] KNOBIG T, WERTHER J,?MAND L-E, et al. Comparison of large-and small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels[J].Fuel, 1998, 77(14):1635-1642.

[38]?MAND L-E, LECKNER B, SV?RD S H, et al. Co-combustion of pulp-and paper sludge with wood–emissions of nitrogen,sulphur and chlorine compounds[C]. 17th International Conference on Fluidized Bed Combustion, Florida, USA, 2003.

[39] VAROL M, ATIMTAY A T, OLGUN H, et al. Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor:Part 1. Effect of excess air ratio[J]. Fuel, 2014, 117:792-800.

[40] XIE Jianjun, YANG Xuemin, ZHANG Lei, et al. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass[J]. Journal of Environmental Sciences,2007, 19(1):109-116.

[41] HOU H M, LI S Y, LU Q G. Gaseous emission of monocombustion of sewage sludge in a circulating fluidized bed[J]. Industrial&Engineering Chemistry Research, 2013, 52(16):5556-5562.

[42]张中林,陈晓平. 440 t/h CFB锅炉掺烧石油焦二氧化硫排放特性研究[J].热能动力工程,2012,27(4):455-458+516-517.ZHANG Zhonglin, CHEN Xiaoping. Study of the SO2 emission characteristics of a 440 t/h circulating fluidized bed boiler burning coal mixed and diluted with petroleum coke[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(4):455-458+516-517.

[43] SHAHZAD K, SALEEM M, GHAURI M, et al. Emissions of NOx,SO2, and CO from co-combustion of wheat straw and coal under fast fluidized bed condition[J]. Combustion Science and Technology, 2015, 187(7):1079-1092.

[44] DUAN L B, CHEN X P, LI Y J, et al. Investigation on SO2emission from 410 t/h circulating fluidized bed boiler burning petroleum coke and coal[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2):274-280.

[45]段伦博,陈晓平,梁财,等.以煤焦混合物为燃料的循环流化床锅炉SO2排放特性[J].化工学报,2008,59(3):728-734.DUAN Lunbo, CHEN Xiaoping, LIANG Cai, et al. SO2 emission characteristics of circulating fluidized bed boiler co-firing coal and petroleum coke[J]. Journal of Chemical Industry and Engineering, 2008, 59(3):728-734.

[46] GUNGOR A. Prediction of SO2 and NOx emissions for low-grade Turkish lignites in CFB combustors[J]. Chemical Engineering Journal, 2009, 146(3):388-400.

[47] LYNGFELT A, LECKNER B. SO2 capture and N2O reduction in a circulating fluidized-bed boiler:Influence of temperature and air staging[J]. Fuel, 1993, 72(11):1553-1561.

[48]汪佩宁.循环流化床过渡区二次风射流及颗粒扩散行为研究[D].北京:清华大学,2017.WANG Peining. Study on secondary air injection and solids dispersion in the splash zone of a circulating fluidized bed[D].Beijing:Tsinghua University, 2017.

[49] MATTISSON T, LYNGFELT A. Reaction between sulfur dioxide and limestone under periodically changing oxidizing and reducing conditions-Effect of cycle time[J]. Energy&Fuels, 1998, 12(5):905-912.

[50] MATTISSON T, LYNGFELT A. The reaction between limestone and SO2 under periodically changing oxidizing and reducing conditionsEffect of temperature and limestone type[J]. Thermochimica Acta,1999, 325(1):59-67.

[51]范红宇,曹欣玉,周俊虎,等.不同气氛下煤燃烧固硫化学反应机理研究进展[J].煤炭学报,2003,28(1):74-79.FAN Hongyu, CAO Xinyu, ZHOU JUnhu, et al. Development of sulfur capture mechanism during coal combustion process in different atmosphere[J]. Journal of Coal Society, 2003, 28(1):74-79.

[52] JEONG S, LEE K S, KEEL S I, et al. Mechanisms of direct and in-direct sulfation of limestone[J]. Fuel, 2015, 161:1-11.

[53] TULLIN C, NYMAN G, GHARDASHKHANI S. Direct Sulfation of CaCO3:The influence of CO2 partial pressure[J]. Energy&Fuels, 1993, 7:512-519.

[54] LUPIá?EZ C, GUEDEA I, BOLEA I, et al. Experimental study of SO2 and NOx emissions in fluidized bed oxy-fuel combustion[J].Fuel Processing Technology, 2013, 106:587-594.

[55] GARCíA-LABIANO F, RUFAS A, LUIS d D L F, et al. Calciumbased sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions[J]. Fuel, 2011, 90(10):3100-3108.

[56] BORGWARDT R H. Calcium oxide sintering in atmospheres containing water and carbon dioxide[J]. Industrial&Engineering Chemistry Research, 1989, 28:493-500.

[57]陈传敏,赵长遂,赵毅,等. O2/CO2气氛下燃煤过程中SO2排放特性实验[J].东南大学学报(自然科学版),2006,36(4):546-550.CHEN Chuanmin, ZHAO Changsui, ZHAO Yi, et al. Experiments of SO2 emission characteristics during coal combution under O2/CO2 atmosphere[J]. Journal of Southeast University(Natural Science Edition), 2006, 36(4):546-550.

[58] DONAT F, FLORIN N H, ANTHONY E J, et al. Influence of hightemperature steam on the reactivity of CaO sorbent for CO2 capture[J].Environmental Science Technology, 2012, 46(2):1262-1269.

[59] STEWART M C, MANOVIC V, ANTHONY E J, et al.Enhancement of Indirect Sulphation of limestone by steam addtion[J]. Environmental Science Technology, 2010, 44(22):8781-8786.

[60] STEWART M C, SYMONDS R T, MANOVIC V, et al. Effects of steam on the sulfation of limestone and NOx formation in an airand oxy-fired pilot-scale circulating fluidized bed combustor[J].Fuel, 2012, 92(1):107-115.

[61]田路泞,陈振辉,杨伟,等.水蒸汽对煤流化床富氧燃烧及SO2析出和脱除的影响[J].煤炭学报,2014,39(12):2537-2543.TIAN Luning, CHEN Zhenhui, YANG Wei, et al. Effect of steam on coal combustion and SO2 emission and removal during oxyfuel fluidized bed combustion[J]. Journal of Coal Society, 2014, 39(12):2537-2543.

[62] MANOVIC V, ANTHONY E J. Carbonation of CaO-based sorbents enhanced by steam addition[J]. Industrial&Engineering Chemistry Research, 2010, 49(19):9105-9110.

[63] LI Z S, LIU Y, CAI N S. Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2[J]. Fuel, 2014, 127:88-93.

[64] MATTISSON T, LYNGFELT A. A method of evaluating limestone reactivity with so, under fluidized bed combustion conditions[J]. The Canadian Journal of Chemical Engineering, 1998, 76:762-770.

[65]高明明,岳光溪,雷秀坚,等.循环流化床锅炉石灰石控制研究[J].动力工程学报,2014,34(10):759-764+777.GAO Mingming, YUE Guangxi, LEI Xiujian, et al. Research on limestone control of circulating fluidized bed boiler[J]. Journal of Chinese Society of Power Engineering, 2014, 34(10):759-764+777.

[66] LIU H, GIBBS B M. The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor[J]. Fuel, 1998, 77(14):1569-1577.

[67]黄文强.循环流化床锅炉不同石灰石给料方式经济性对比[J].工业锅炉,2010(4):38-40.HUANG Wenqiang. The Economy contrast of different limestone feeding way of CFB boiler[J]. Industrial Boilers, 2010(4):38-40.

[68]张茂龙,李陟峰,徐振伟,等.大型循环流化床锅炉超低排放技术应用研究[J].锅炉技术,2019,50(6):39-44.ZHANG Maolong, LI Zhifeng, XU Zhenwei, et al. Application of ultra low emission for large-scale circulating fluidized bed boiler[J]. Boiler Technology, 2019, 50(6):39-44.

[69]张磊,杨学民,谢建军,等.粉煤和石灰石加入位置对循环流化床燃煤过程NOx与N2O排放的影响[J].中国电机工程学报,2006,26(21):92-98.ZHANG Lei, YANG Xuemin, XIE Jianjun, et al. Effect of coal and limestone addition position on emission of NOx and N2O during coal combustion in a circulating fluidized bed combustor[J]. Proceedings of the CSEE, 2006, 26(21):92-98.

[70] KE X W, CAI R X, ZHANG M, et al. Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices[J]. Fuel Processing Technology, 2018, 181:252-258.

[71]张志华.基于环保约束的CFB机组联合脱硫节能优化与控制研究[D].太原:山西大学,2016.ZHANG Zhihua. Optimization control research considering energysaving and pro-environment of combined desulfurization system for circulating fluidized bed unit[D]. Taiyuan:Shanxi University, 2016.

[72] DIEGO L F D, LONDONOT C A, WANG X S, et al. Influence of operating parameters on NOx and N2O axial profiles in a circulating fluidized bed combustor[J]. Fuel, 1996, 75(8):971-978.

[73] TARELHO L A C, MATOS M A A, PEREIRA F J M A. Influence of limestone addition on the behaviour of NO and N2O during fluidised bed coal combustion[J]. Fuel, 2006, 85(7-8):967-977.

[74] SHIMIZU T, TACHIYAMA Y, FUJITA D, et al. Effect of SO2 removal by limestone on NO, and N2O emissions from a circulating fluidized bed combustor[J]. Energy&Fuels, 1992, 6:753-757.

[75]周浩生,陆继东,周琥.燃煤流化床加入氧化钙的氮转化机理[J].工程热物理学报,2000,21(5):647-651.ZHOU Haosheng, LU Jidong, ZHOU Hu. Nitrogen conversion in fluidized bed combustion of coal with limestone addition[J].Journal of Engineering Thermophysics, 2000, 21(5):647-651.

[76] ZHAO J, GRACE J R, LIM C J, et al. Influence of operating parameters on NOx emissions from a circulating fluidized bed combustor[J]. Fuel, 1994, 73(10):1650-1657.

[77]辛胜伟.大型循环流化床锅炉SO2超低排放改造关键技术研究[J].电力科技与环保,2017,33(4):10-13.XIN Shengwei. Study on modification of SO2 ultra-low emission in CFB boiler[J]. Electric Power Technology and Environmental Protection, 2017, 33(4):10-13.

Basic Information:

DOI:10.19944/j.eptep.1674-8069.2025.02.002

China Classification Code:X701

Citation Information:

[1]韩铠泽,刘方,张光学.循环流化床锅炉炉内脱硫技术研究进展[J].电力科技与环保,2025,41(02):183-193.DOI:10.19944/j.eptep.1674-8069.2025.02.002.

Fund Information:

国家自然科学基金项目(52306029)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search