100 | 0 | 11 |
Downloads | Citas | Reads |
【目的】氨掺烧对推动能源结构清洁低碳转型具有重要意义。为进一步研究掺氨比例变化对锅炉燃烧状况的具体影响,【方法】本文以能量平衡为基础建立300 MW煤粉锅炉热力计算模型,通过锅炉热力计算考察了不同氨掺烧比例下燃料消耗量、锅炉效率及烟气特性随氨燃料掺烧比例的变化规律;进一步分析了炉膛辐射减弱系数和黑度随氨掺烧比例的变化规律。【结果】研究表明:掺烧比例从0增大到40%,排烟热损失增加5.3%,锅炉效率下降0.21%;烟气量增加6.2%,烟气中水含量增加64.2%,3原子气体含量降低41.4%;水露点提高了11.9%,酸露点在掺烧比例为40%时达到最大值135℃;理论燃烧温度降低46℃,炉膛出口温度提高8℃;火焰辐射减弱系数、火焰辐射吸收率、火焰黑度和炉膛黑度均随氨掺烧量增大而逐渐降低;当燃煤发电机组的氨掺烧量为43%时,碳排放量与同等容量的燃气发电机组碳排放量一致。【结论】研究结果可为氨煤混烧技术开发、锅炉受热面结构设计及污染物控制设备运行参数选取提供重要支撑。
Abstract:[Objective] Ammonia-coal co-firing is of great significance in promoting the clean and low-carbon transformation of energy structure. To study the influence of ammonia co-firing ratio on combustion characteristics, [Methods] a thermal calculation model of a 300 MW coal-fired boiler was set up based on the energy balance method. The changes in fuel consumption, boiler efficiency, and flue gas characteristics with ammonia ratios were investigated in this paper. Furthermore, the analysis of the variation of furnace radiation attenuation coefficient and blackness with ammonia ratios were also conducted. [Results] The results show that the ammonia ratio increases from 0 to 40%, the heat loss of exhaust gas increases by 5.3%, the boiler efficiency decreases by 0.21%, the flue gas volume increases by 6.2%, the water content in the flue gas increased by 64.2%, and the triatomic gas content decreased by 41.4%,the water dew point increases by 11.9%, the theoretical combustion temperature decreases by 46 ℃, and the furnace outlet temperature increases by 8 ℃. The acid dew point reaches a maximum value of 135 ℃ at 40% ammonia ratio. The flame radiation attenuation coefficient and flame radiation absorption rate, the flame and furnace blackness, gradually decrease with the increase of ammonia ratio in fuel. When the ammonia blending amount of coal-fired generating units is 43%, the carbon emission is consistent with the carbon emission of gas-fired generating units with the same capacity. [Conclusion] The results can provide important support for the development of ammonia-coal co-firing technology, the design of boiler heating surface, and the selection of operating parameters of pollutant control equipment.
[1]朱法华,徐静馨,潘超,等.煤电在碳中和目标实现中的机遇与挑战[J].电力科技与环保, 2022, 38(2):79-86.ZHU Fahua, XU Jingxin, PAN Chao, et al. Opportunities and challenge of coal power industry in the achievement of carbon neutrality goal[J]. Electric Power Technology and Environmental Protection, 2022, 38(2):79-86.
[2]潘荔,陈忠,石丽娜,等.燃煤机组负荷变化对碳交易的影响初探[J].电力科技与环保, 2022, 38(6):492-499.PAN Li, CHEN Zhong, SHI Lina, et al. Study on the impact of coal-fired power load change on carbon trading[J]. Electric Power Technology and Environmental Protection, 2022, 38(6):492-499.
[3]肖先勇,刘俊勇.专栏评述:新型电力系统[J].工程科学与技术,2023, 55(1):1-2.XIAO Xianyong, LIU Junyong. Column review:New type power system[J]. Advanced Engineering Sciences, 2023, 55(1):1-2.
[4]冯伟忠,李励.“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术, 2022, 43(3):452-461.FENG Weizhong, LI Li. Research h and practice on development path of low-carbon, zero-carbon and negative carbon transformation of coal-fired power units under''Double Carbon''targets[J]. Power Generation Technology, 2022, 43(3):452-461.
[5]雍瑞生,杨川箬,薛明,等.氨能应用现状与前景展望[J].中国工程科学, 2023, 25(2):111-121.YOG Ruisheng, YANG Chuanzan, XUE Ming, et al. Application status and prospect of ammonia energy[J]. Strategic Study of CAE,2023,25(02):111-121.
[6]赖诗妮,江丽霞,李军,等.含碳掺氨燃料的研究进展[J].化工进展, 2023, 42(9):4603-4615.LAI Shini, JIANG Lixia, LI Jun, et al. Research progress of ammonia blended fossil fuel[J]. Chemical Industry and Engineering Progress, 2023, 42(9):4603-4615.
[7] KOBAYASHI H, HAYAKAWA A, SOMARATHNE A, et al.Science and technology of ammonia combustion[J]. Proceedings of the Combustion Institute, 2019, 37(1):109-133.
[8]谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报, 2021, 46(7):2197-2211.XIE Heping, REN Shihua, XIE Yachen, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7):2197-2211.
[9]牛涛,张文振,刘欣,等.燃煤锅炉氨煤混合燃烧工业尺度试验研究[J].洁净煤技术, 2022, 28(3):193-200.NIU Tao, ZHANG Wenzhen, LIU Xin, et al. Industrial-scale experimental investigation of ammonia-coal cofiring in coal-fired boiler[J] Clean Coal Technology, 2022, 28(3):193-200.
[10]朱京冀,徐义书,徐静颖,等.掺烧氨燃料对煤挥发分火焰特性及颗粒物生成的影响[J].发电技术, 2022, 43(6):908-917.ZHU Jingji, XU Yishu, XU Jingying, et al. Effect of co-firing ammonia on coal volatile flame characteristics and particulate matter formation behaviors[J]. Power Generation Technology,2022, 43(6):908-917.
[11]底一,黄骞,马鹏,等.生物质掺氨燃烧特性试验研究[J].中国电机工程学报, 2022, 42(18):6547-6552.DI Yi, HUANG Qian, MA Peng, et al. Experimental investigation on combustion characteristics of cofiring biomass with ammonia[J]. Proceedings of the CSEE, 2022, 42(18):6547-6552.
[12]北极星电力网. 300 MW机组35%掺氨,实现了[EB/OL].(2023-04-10)[2024-01-24]. https://baijiahao. baidu. com/s?id=1762778952342725811&wfr=spider&for=pc.
[13]段伦博,李天新.氨燃烧特性及稳燃技术研究进展[J].华中科技大学学报(自然科学版), 2022, 50(7):41-54.DUAN Lunbo, LI Tianxin. Research progress of ammonia combustion characteristic and stable-combustion technology[J].Journal of Huazhong University of Science and Technology(Nature Science Edition), 2022, 50(7):41-54.
[14] ZHANG J W, ITO T, ISHII H, et al. Numerical investigation on ammonia co-firing in a pulverized coal combustion facility:Effect of ammonia co-firing ratio[J]. Fuel, 2020, 267:117166.
[15]王一坤,邓磊,王涛,等.大比例掺烧NH3对燃煤机组影响分析[J].洁净煤技术, 2022, 28(3):185-192.WANG Yikun, DENG Lei, WANG Tao, et al. Influence of large scale coupled NH3 power generation on coal-fired units[J]. Clean Coal Technology, 2022, 28(3):185-192.
[16] SOUSA C J, SILVA V, EUSEBIO D, et al. Numerical modelling of ammonia-coal co-firing in a pilot-scale fluidized bed reactor:Influence of ammonia addition for emissions control[J]. Energy Conversion and Management, 2022, 254:115226.
[17] XU Y S, WANG H K, LIU X W, et al. Mitigating CO2 emission in pulverized coal-fired power plant via co-firing ammonia:A simulation study of flue gas streams and exergy efficiency[J].Energy Conversion and Management, 2022, 256:115328.
[18] ZHU J J, LIU X W, XU Y S, et al. Probing into volatile combustion flame and particulate formation behavior during the coal and ammonia co-firing process[J]. Energy&Fuels, 2022, 36(16):9347-9356.
[19]王爽奇,田宇,龚迎莉,等. 330 MW煤粉锅炉掺烧生物质气化气对锅炉性能的影响分析[J].电力学报, 2021, 36(5):397-403.WANG Shuangqi, TIAN Yu, GONG Yingli, et al. Analysis on effect of boiler performance of mixed burning biomass gasification gas in a 330 MW pulverized coal boiler[J]. Journal of Electric Power, 2021, 36(5):397-403.
[20]贾培英,殷亚宁. 300 MW煤粉锅炉掺烧氢气的应用研究[J].电站系统工程, 2016, 32(2):37-38.JIA Peiying, YIN Yaning. Study on co-combustion hydrogen in a 300 MW coal-fired boiler[J]. Power System Engineering, 2016, 32(2):37-38.
[21]白岩,郭风波,汪伟.某电厂锅炉直吹式制粉系统问题治理[J].东北电力技术, 2011, 26(3):354-357.BAI Yan, GUO Fengbo, WANG Wei. The treatment of problem of direct firing pulverizing system in a power plant[J]. Northeast Electric Power Technology, 2011, 26(3):354-357.
[22] LI Y, FAN W D, WANG Y, et al. Characteristics of char gasification in staged oxygen-enriched combustion in a down flame furnace[J]. Energy&Fuels, 2016, 30:1675-1684.
[23]岳峻峰,肖杰,秦鹏.双进双出磨煤机降低磨煤电耗试验研究[J].热能动力工程, 2011, 26(3):354-357.YUE Junfeng, XIAO Jie, QIN Peng. Experimental study of a dual inlet and outlet coal mill for reducing its milling power consumption[J]. Journal of Engineering for Thermal Energy and Power, 2011, 26(3):354-357.
[24] SOUSA C J, SILVA V, EUSéBIO D, et al. Numerical modelling of ammonia coal co-firing in a pilot scale fluidized bed reactor:Influence of ammonia addition for emissions control[J]. Energy Conversion and Management, 2022, 254:115226.
[25] MERANER C, LI T, DITARANTO M, et al. Effects of scaling laws on the combustion and NOx characteristics of hydrogen burners[J]. Combustion and Flame, 2020, 214:407-418.
[26] XIA Y, HADI K, HASHIMOTO G, et al. Effect of ammonia/oxygen/nitrogen equivalence ratio on spherical turbulent flame propagation of pulverized coal/ammonia co-combustion[J].Proceedings of the Combustion Institute, 2021, 38(3):4043-4052.
[27]蒋安众,王罡,石书雨,等.锅炉烟气酸露点温度计算公式的研究[J].锅炉技术, 2009, 40(5):11-13+17.JIANG Anzhong, WANG Gang, SHI Shuyu. Discussion on calculation formulae of boiler's acid dwe-point temperature of gas[J]. Boiler Technology, 2009, 40(5):11-13+17.
[28]汪鑫,陈钧,范卫东.燃煤电站锅炉掺氨燃烧与排放特性综述[J].洁净煤技术, 2022, 28(8):25-34.WANG Xin, CHEN Jun, FAN Weidong. Review on combustion and emission characteristics of coal-fired utility boilers ammonia/coal co-firing[J]. Clean Coal Technology, 2022, 28(8):25-34.
[29] REITER A J, KONG S C. Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions[J]. Energy&Fuels, 2008, 22(5):2963-2971.
[30]吕强,王儒儒,李长兴,等.燃煤锅炉掺氨燃烧研究进展[J].节能技术, 2023, 41(4):324-331.LYU Qiang, WANG Ruru, LI Changxing, et al. Research progress on co-firing ammonia in coal-fired boiler[J]. Energy Conservation Technology, 2023, 41(4):324-331.
[31]陈达南,李军,黄宏宇,等.氨燃烧及反应机理研究进展[J].化学通报, 2020, 83(6):508-515.CHEN Danan, LI Jun, HUANG Hongyu, et al. Progress in ammonia combustion and reaction mechanism[J]. Chemistry,2020, 83(6):508-515.
[32]康志忠,张震卓,丁先,等.氨煤混燃气相中NO生成的化学反应动力学分析[J].动力工程学报, 2024, 44(6):844-850.KANG Zhizhong, ZHANG Zhenzhuo, DING Xian, et al. Chemical reaction kinetics analysis of NO generation in gas phase of ammonia-coal co-firing[J]. Journal of Chinese Society of Power Engineering, 2024, 44(6):844-850.
[33] TIAN J, WANG L, XIONG Y Q, et al. Enhancing combustion efficiency and reducing nitrogen oxide emissions from ammonia combustion:A comprehensive review[J]. Process Safety and Environmental Protection, 2024, 183:514-543.
[34] ZHENG R, CHEN L, LI J G, et al. Optical study on the effects of wall and intake temperatures on ammonia combustion and emissions[J]. The Journal of Physical Chemistry C, 2016, 120(43):24734-24742.
[35] LI Y, FAN W D, GUO Q, et al. Numerical modeling of oxy-fuel combustion in a refractory-lined down flame furnace[J]. Energy&Fuels, 2013, 28:155-162.
[36] ZHAI Y F, LIU X W, ZHOU Z J, et al. Effect of ammonia co-firing ratio on the formation of condensable particulate matter in pollutants during coal/ammonia co-combustion[J]. Fuel, 2024, 356:129579.
[37] CHEN C, LIU D. Review of effects of zero-carbon fuel ammonia addition on soot formation in combustion[J]. Renewable and Sustainable Energy Reviews, 2023, 185:113640.
[38]高正平,涂安琪,李天新,等.面向零碳电力的氨燃烧技术研究进展[J].洁净煤技术, 2022, 28(3):173-184.GAO Zhengping, TU Anqi, LI Tianxin, et al. Recent advances on ammonia combustion technology for zero-carbon power[J]. Clean Coal Technology, 2022, 28(3):173-184.
[39] ZHANG M M, CHEN Q, LIU N, et al. Kinetic insights into ammonia-hydrogen doped ignition and emission assisted by nanosecond pulsed discharge[J]. International Journal of Hydrogen Energy, 2024, 78:773-782.
[40]司桐,黄骞,杨远平,等.煤炭掺氨燃烧基础研究与技术应用研究进展[J].煤炭学报, 2024, 49(6):2876-2886.SI Tong, HUANG Qian, YANG Yuanping, et al. Advancements and future outlook in fundamental research and technological applications for ammonia co-firing with coal[J]. Journal of China Coal Society, 2024, 49(6):2876-2886.
[41]刘峰,冯少波,赵兵涛,等.氨及掺氨燃烧过程机理与特性研究进展[J].化学工业与工程, 2023, 40(6):107-118.LIU Feng, FENG Shaobo, ZHAO Bingtao, et al. Advances in process characteristics and mechanisms of ammonia combustion and co-firing[J]. Chemical Industry and Engineering, 2023, 40(6):107-118.
[42]罗俊伟,张泽武,查小健,等.高温预热氨煤掺混MILD燃烧反应特性[J].华南师范大学学报(自然科学版), 2023, 55(5):31-38.LUO Junwei, ZHANG Zewu, ZHA Xiaojian, et al. Reaction characteristics of coal/NH3 co-combustion affected by the highly preheated temperature under MILD combustion mode[J]. Journal of South China Normal University(Natural Science Edition), 2023,55(5):31-38.
[43]徐连兵,陈璟,魏书洲,等.大比例掺氨下煤粉火焰区喷氨位置对燃烧及NO生成特性的影响[J].洁净煤技术, 2023, 29(9):134-144.XU Lianbing, CHEN Jing, WEI Shuzhou, et al. Effect of ammonia injection location in the pulverized-coal flame zone on combustion and NO formation characteristics under large proportion of ammonia blending conditions[J]. Clean Coal Technology, 2023, 29(9):134-144.
[44]徐静颖,朱鸿玮,徐义书,等.燃煤电站锅炉氨燃烧研究进展及展望[J].华中科技大学学报(自然科学版),2022,50(7):55-65.XU Jingying, ZHU Hongwei, XU Yishu, et al. Research progress and prospect of ammonia co-firing in utility coal-fired boiler[J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(7):55-65.
Basic Information:
DOI:10.19944/j.eptep.1674-8069.2025.02.012
China Classification Code:TM621.2
Citation Information:
[1]王翔,王雪,侯宗余等.300 MW煤粉锅炉氨燃料掺烧对锅炉烟气特性的影响分析[J].电力科技与环保,2025,41(02):294-302.DOI:10.19944/j.eptep.1674-8069.2025.02.012.
Fund Information:
低碳智能燃煤发电与超净排放全国重点实验室开放课题