173 | 0 | 64 |
Downloads | Citas | Reads |
【目的】为提高火电行业排放的CO2电催化还原制甲酸(HCOOH)的效率,降低CO2在大气环境中的排放水平,【方法】本文通过分析电催化CO2还原反应(electrochemical carbon dioxide reduction reaction,ECO2RR)的途径和不同调控策略下的Bi金属基电催化效果,提出高效Bi基催化剂的改进方向。【结果】研究表明,在电解池中稳定运行时间大于100 h的情况下,Bi基催化剂可实现大于85%的法拉第效率;Bi基ECO2RR催化剂可以从表面形貌设计、表面改性、缺陷工程、组分调控4个方面进行改进。表面形貌设计可以提供更多的活性位点,但不能满足商业规模HCOOH生产的实际应用需求;表面改性可以在选择性和活性方面产生有益影响,但存在稳定性、成本、机理等问题;缺陷工程可以优化反应中电荷转移和中间体的结合强度,但缺陷的可控性和机理需要进行研究;组分调控可以从元素掺杂、合金化、异质结构构建3个方面进行,是目前优化Bi基ECO2RR反应的重要途径,但还需要补充更加贴合工业开发的检验和计算。【结论】Bi基催化剂在电还原CO2制HCOOH的工业化应用中具有突出潜力,更加深入的改进和机理研究可以加速CO2衍生化学品的工业化。
Abstract:[Objective] In order to improve the efficiency of electrocatalytic reduction of CO2 emitted by the thermal power industry to formic acid(HCOOH) and reduce the emission level of CO2 in the atmospheric environment,[Methods] In this paper, the improvement direction of high-efficiency Bi-based catalysts was proposed by analyzing the pathways of electrochemical carbon dioxide reduction reaction(ECO2RR) and the electrocatalytic effects of Bi metalbased catalysts under different control strategies. [Results] Studies have shown that Bi-based catalysts can achieve a Faraday efficiency greater than 85% when the stable operation time in the electrolytic cell is greater than 100 h. Bibased ECO2RR catalysts can be regulated from four aspects : surface morphology design, surface modification, defect engineering and component regulation. The surface morphology design can provide more active sites, but it cannot meet the practical application requirements of commercial scale HCOOH production. Surface modification can have beneficial effects on selectivity and activity, but there are problems such as stability, cost and mechanism. Defect engineering can optimize the charge transfer in the reaction and the bonding strength of the intermediate, but the controllability and mechanism of defects need to be studied. Component regulation can be carried out from three aspects: Element doping, alloying, and heterostructure construction. It is an important way to optimize the Bi-based ECO2RR reaction, but it also needs to supplement the test and calculation that are more in line with industrial development. [Conclusion] Bi-based catalysts have outstanding potential in the industrial application of electroreduction of CO2 to HCOOH. More in-depth improvement and mechanism research can accelerate the industrialization of CO_2-derived chemicals.
[1] International Energy Agency. CO2 Emissions in 2023[R]. 2024.
[2] LI L, LI X D, SUN Y F, et al. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network[J]. Chemical Society Reviews, 2022, 51(4):1234-1252.
[3] KORTLEVER R, SHEN J, SCHOUTEN K J P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. Journal of Physical Chemistry Letters, 2015, 6(20):4073-4082.
[4] SHE X J, WANG Y F, XU H, et al. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels[J].Angewandte Chemie-International Edition, 2022, 61(49):e202211396.
[5] YANG F, ELNABAWY A O, SCHIMMENTI R, et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction[J].Nature Communications, 2020, 11(1):2352.
[6] WANG G X, CHEN J X, DING Y C, et al. Electrocatalysis for CO2conversion:From fundamentals to value-added products[J].Chemical Society Reviews, 2021, 50(8):4993-5061.
[7] JIANG M H, WANG H Z, ZHU M F, et al. Review on strategies for improving the added value and expanding the scope of CO2electroreduction products[J]. Chemical Society Reviews, 2024, 53(10):5149-5189.
[8] FERNáNDEZ-CASO K, DíAZ-SAINZ G, ALVAREZ-GUERRA M, et al. Electroreduction of CO2:Advances in the continuous production of formic acid and formate[J]. ACS Energy Letters,2023, 8(4):1992-2024.
[9] TAYLOR H S. A theory of the catalytic surface[J].Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1925, 108:105-11.
[10] ZHU X W, XU Y, RAN L, et al. Tuning strategies of indiumbased catalysts for electrocatalytic carbon dioxide reduction[J].Small Structures, 2024:2400548.
[11] TIAN Y, LI D, WU J, et al. Electroreduction of CO2 to formate with excellent selectivity and stability on nano-dendrite Bi film electrode[J]. Journal of CO2 Utilization, 2021, 43:101360.
[12] LIU C, WU Z L, LI Y H, et al. In situ transformation of a Bibased MOF to a highly active catalyst for CO2 reduction[J]. New Journal of Chemistry, 2024, 48:15112-15119.
[13] ZHANG J H, ZHAO K, MA Y M, et al. High-yield electrosynthesis of formic acid from CO2 reduction on singlebismuth catalyst loaded on N-doped hollow carbon nanospheress[J]. Small Structures, 2024, 5:2300323.
[14] MA S C, WU K, FAN S J, et al. Lattice-dislocated bismuth nanowires formed by in-situ chemical etching on copper foam for enhanced electrocatalytic CO2 reduction[J]. Separation and Purification Technology, 2024, 349:127926.
[15] PANG Y Y, XIE R K, XIE H, et al. Porous Bi nanosheets derived from β-Bi2O3 for efficient electrocatalytic CO2 reduction to formate[J]. ACS Applied Materials&Interfaces, 2024, 16(32):42109-42117.
[16] CHEN Z P, ZHANG D D, LI Q Z, et al. In-situ reconstruction of Bi60In2O93 nanotube for stable electroreduction of CO2 at amperecurrent densities[J]. Applied Catalysis B:Environment, 2024,341:123342.
[17] CAO L L, HUANG J, WU X Y, et al. Boosting and stabilizing the electrocatalytic reduction of carbon dioxide on Bi2O2CO3 via surface modification with p-aminobenzoic acid[J]. Applied Catalysis B:Environment and Energy, 2024, 358:124451.
[18] WU W B, TONG Y, YE Y T, et al. In-situ electrochemical transformation of F-modified metallic bismuth for highly-efficient CO2 electroreduction and Zn-CO2 battery[J]. Chemical Engineering Journal, 2024, 494:153105.
[19] NATARAJAN T, ARUMUGAM S, TSAI Y F, et al. Unveiling the enhanced electrochemical CO2 conversion:The role of 3D porous BiOCl with defects and CTAB-mediated nanosheets[J]. Journal of CO2 Utilization, 2024, 85:102888.
[20] WANG Y H, GONG H, WANG Y Y, et al. Lattice-dislocated Bi nanosheets for electrocatalytic reduction of carbon dioxide to formate over a wide potential window[J]. Journal of Colloid and Interface Science, 2021, 611:246-254.
[21] WU K, YANG P W, FAN S J, et al. Formation of bismuth nanosheets on copper foam coupled with nanobubble technology for enhanced electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2024, 12(48):33972-33983.
[22] ZHANG Y C, ZHANG Z J, WANG M, et al. Boosting electroreduction CO2 reduction to formate at ampere level over La doped Bi catalyst[J]. Sustainable Chemistry and Pharmacy, 2025, 44:101973.
[23] YANG Z Y, AN X W, FENG Z B, et al. Fabrication of indium doped Bi/Bi2O3 catalyst for efficiently selective electroreduction of carbon dioxide to formate[J]. Separation and Purification Technology, 2025, 354:129205.
[24] NING R Q, LIU F, GENG S, et al. Tuning microenvironment of Bi2O3 nanosheets via Ce doping for promoting CO2 electrolysis to formate[J]. Journal of Environmental Chemical Engineering, 2024,12(6):114951.
[25] LIU M X, ZHOU A N, XU Z S, et al. Ordered PdBi alloys for high-performance CO2 electroreduction and enhanced formic acid selectivity[J]. Advanced Sustainable Systems, 2024:2400562.
[26] SUN J M, YANG W F, YU B, et al. Mechanistic understanding of the antimony-bismuth alloy promoted electrocatalytic CO2reduction to formate[J]. Journal of Materials Chemistry A, 2025,13:5661-5669.
[27] LI Y M, JIN Y M, ZONG X, et al. In-Bi bimetallic nanofibers with controllable crystal facets for high-rate electrochemical reduction of CO2 to formate[J]. Journal of Materials Chemistry A, 2023, 11:11445-11453.
[28] FENG X Z, ZOU H Y, ZHENG R J, et al. Bi2O3/BiO2Nanoheterojunction for Highly Efficient Electrocatalytic CO2Reduction to Formate[J]. Nano Letters, 2022, 22(4):1656-1664.
[29] XU Q Q, SU K X, CHEN J Y, et al. Bismuth oxycarbonates loaded on nitrogen-doped carbon:an efficient nanocomposite catalyst for electrochemical reduction of CO2 to formate[J]. Nanoscale, 2025,17:9588-9598.
[30] SONG C Z, JIANG K Y, SHI P F, et al. Interfacial engineering of bismuth sulfide/oxychloride heterostructure for boosting the conversion from CO2 to formate at large current densities[J].Chemical Engineering Science, 2023, 277:118838.
[31] YE R Z, ZHU J Y, TONG Y, et al. Metal oxides heterojunction derived Bi-In hybrid electrocatalyst for robust electroreduction of CO2 to formate[J]. Journal of Energy Chemistry, 2023, 83:180-188.
[32] LAI D Z, XIE M Y, ZHAO H W, et al. High catalytic activity of tin oxide antimony supported bismuth heterogeneous catalyst with stable Bi-O structure for the electroreduction of CO2 to formic acid[J]. Electrochimica Acta, 2023, 464:142893.
[33] WANG D N, SUN T T, XU L B, et al. Interfacial engineering of SnO2/Bi2O2CO3 heterojunction on heteroatoms-doped carbon for high-performance CO2 electroreduction to formate[J]. Nano Research, 2022, 16:2278-2285.
[34] ZHAI J R, HU Y, SU M F, et al. One-step phase separation for coreshell carbon@indium oxide@Bismuth microspheres with enhanced activity for CO2 electroreduction to formate[J]. Small, 2023, 19(10):2206440.
[35] XU X, WEI Y, MI L H, et al. Interstitial Sn-doping promotes electrocatalytic CO2-to-formate conversion on bismuth[J].Science China Materials, 2023, 66(9):3539-3546.
[36] REN X X, LIU F, WU H, et al. Reconstructed bismuth oxide through in situ carbonation by carbonate-containing electrolyte for highly active electrocatalytic CO2 reduction to formate[J].Angewandte Chemie International Edition, 2024, 63(9):e202316640.
[37] DENG C J, QI C F, XUE Z P, et al. A nanosheet CH3COO(BiO)topotactically converted into nanocomposite of bismuth clusters and Bi2O2CO3for highly efficient electrocatalytic reduction of CO2to formate[J]. Fuel, 2024, 373:132280.
[38] LIU S J, WANG H B, WANG X, et al. Bi2S3/In(OH)3heterojunction for enhanced CO2 electroreduction to formic acid[J]. Progress in Natural Science-Materials International, 2024, 34(6):1167-1172.
Basic Information:
DOI:10.19944/j.eptep.1674-8069.2025.03.002
China Classification Code:TQ225.121;O643.36;X773
Citation Information:
[1]曹元波,杨涛,陈兵等.双碳背景下电还原二氧化碳制甲酸用Bi基催化剂的研究与展望[J].电力科技与环保,2025,41(03):357-372.DOI:10.19944/j.eptep.1674-8069.2025.03.002.
Fund Information:
国家自然科学基金项目(52474319); 北京科技大学青年教师学科交叉研究项目(中央高校基本科研业务费专项资金资助项目)(FRF-IDRY-GD23-003)