College of Power Engineering, North China Electric Power University;China Southern Grid Power Technology Co., Ltd.;Guangdong Energy Conservation&Supervision Center;China Energy Group Guangdong Electric Power Co., Ltd.;
[Objective]To further improve the flexibility of coal-fired power plants, the peak shifting depth is increased.[Methods] In this paper, a 670 MW supercritical primary reheat coal-fired unit is taken as the research object, and athermal system model is established based on Ebsilon 16.4 to simulate the combination of three heat storage schemesand three heat release schemes. The performances of different combination schemes are evaluated by comparing theindexes of peaking depth, heat storage power, efficiency and thermal efficiency. [Results]Under the heat storagecondition, extracting the exhaust steam from the medium-pressure cylinder can significantly reduce the load of the low-pressure cylinder up to 78%.It is necessary to combine with reheat steam to increase the temperature of the molten salt;the electric heating heat storage scheme has the highest heat storage power up to 100.17 MW·h, but the molten saltdosage is larger. In the heat release condition, heating high-pressure feedwater step by step can reduce the amount ofsteam extraction, and the maximum electric load is increased by 7.4%. The analysis of the combined scheme showsthat the scheme of electrically heated heat storage combined with step-by-step heating of feedwater has the optimalperformance, with its whole-process exergy efficiency of 40.71%, thermal efficiency of 42.3%, and peak shifting depthsignificantly better than other schemes. In addition, the working temperature range of molten salt has a significant effecton energy utilization, and the temperature difference control can reduce the energy loss. The electrically heated heatstorage scheme is better than the traditional steam extraction heat storage in terms of energy reuse rate and systemefficiency, and is suitable for scenarios requiring fast response to peak shifting. The strategy of heating the high-pressurefeedwater step by step when releasing the heat can maximize the flexibility of the unit. [Conclusion] The results of thestudy provide a theoretical basis for the design and modification of the coupled molten salt thermal storage system incoal-fired power plants, which is an important reference value for new energy consumption and grid stability improvement.
39 | 0 | 6 |
Downloads | Citas | Reads |
[1]潘翔峰,黄畅,张琪,等.风-光-储能源系统变工况动态仿真研究[J].热力发电,2021,50(8):164-171.PAN Xiangfeng,HUANG Chang,ZHANG Qi,et al. Dynamic simulation study of wind-solar-storage energy system under variable operating conditions[J]. Thermal Power Generation, 2021, 50(8):164-171.
[2]刘福国,张绪辉.两点法确定供电煤耗-负荷特性曲线研究[J].热力发电,2020,49(9):87-92.LIU Fuguo,ZHANG Xuhui. Determination of load-impacted curve on generation efficiency of coal-fired unit by two-point method[J].Thermal Power Generation, 2020, 49(9):87-92.
[3]洪金彪.锅炉低负荷运行时NOx排放偏高的原因分析及调整措施[J].锅炉技术,2021,52(3):46-49.HONG Jinbiao. Cause analysis and adjustment measures of high NOx emission during low load operation of boiler[J]. Boiler Technology,2021,52(3):46-49.
[4]魏海姣,鹿院卫,刘金恺,等.基于储热的燃煤机组深度调峰规模化消纳可再生能源发电研究[J].热力发电,2023,52(2):79-89.WEI Haijiao, LU Yuanwei, LIU Jinkai, et al. Research on largescale renewable energy power consumption by peak shaving system of coal-fired power unit integrated with thermal energy storage[J].Thermal Power Generation, 2023,52(2):79-89.
[5]张成凤,朱轶林,胡东子,等.火-储耦合系统深度调峰综合经济性分析[J].储能科学与技术,2024,13(10):3693-3705.ZHANG Chengfeng, ZHU Yilin, HU Dongzi, et al. Comprehensive economic analysis of deep peak shaving in thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology,2024,13(10):3693-3705.
[6]袁浩锋,柯杨,向昆,等.风光火储多源系统参与调峰的分层优化调度研究[J/OL].水力发电,1-7[2024-11-19].http://kns.cnki.net/kcms/detail/11.1845.tv.20241031. 1024.002.html.YUAN Haofeng,KE Yang,XIANG Kun,et al. Hierarchical optimized scheduling of multi-source systems with wind-solarthermal-energy storage considering peak regulation[J]. Water Power, 1-7[2024-11-19]. http://kns. cnki. net/kcms/detail/11.1845.tv.20241031.1024.002.html.
[7]和萍,宫智杰,靳浩然,等.高比例可再生能源电力系统调峰问题综述[J].电力建设,2022,43(11):108-121.He ping, Gong zhijie, Jin haoran, et al. Review of peak-shaving problem of electric power system with high proportion of renewable energy[J]. Electric Power Construction,2022,43(11):108-121.
[8]李博,曹越,徐景怡,等.考虑火电-熔盐储热耦合特性的风光火储能源调度[J].综合智慧能源,2024,46(12):55-63.LI Bo,CAO Yue,XU Jingyi,et al. Energy dispatch of windphotovoltaic-thermal-storage considering the coupling characteristics of hermal power and molten salt heat storage[J]. Integrated Intelligent Energy,2024,46(12):55-63.
[9]张钟平,刘亨,谢玉荣,等.熔盐储热技术的应用现状与研究进展[J].综合智慧能源,2023,45(9):40-47.ZHANG Zhongping,LIU Heng,XIE Yurong,et al. Application and research progress of molten salt heat storage technology[J].Integrated Intelligent Energy,2023,45(9):40-47.
[10]巩志强,商攀峰,徐明新,等.煤电机组耦合储热系统的灵活性调峰特性研究及其性能评价[J].中国电机工程学报,2024,44(12):4837-4850.GONG Zhiqang,SHANG Panfeng,XU Mingxin,et al. Research and evaluation on the flexible peaking performance of coal-fired power plants coupled with thermal storage[J]. Proceedings of the CSEE,2024,44(12):4837-4850.
[11]张显荣,徐玉杰,杨立军,等.多类型火电-储热耦合系统性能分析与比较[J].储能科学与技术,2021,10(5):1565-1578.ZHANG Xianrong,XU Yujie,YANG Lijun,et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology,2021,10(5):1565-1578.
[12]庞力平,张世刚,段立强.高温熔盐储能提高二次再热机组灵活性研究[J].中国电机工程学报,2021,41(8):2682-2691.PANG Liping,ZHANG Shigang,DUAN Liqiang. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J].Proceedings of the CSEE,2021,41(8):2682-2691.
[13]梁惠勋,庞力平,段立强,等.高温熔盐储能提升燃煤机组动态响应的分析[J].发电设备,2024,38(2):67-75+81.LIANG huixun,PANG liping,DUAN liqiang,et al. Analysis on the improvement for dynamic response of a coal-fired unit with high-temperature molten salt energy storage[J].Power Equipment,2024,38(2):67-75+81.
[14]魏乐,樊冰芬,张怡,等.耦合熔盐储热的火电机组灵活调峰控制策略研究[J/OL].中国电机工程学报,1-13[2024-10-19].https://doi.org/10.13334/j.0258-8013.pcsee.241471.WEI Le,FAN Bingfen,ZHANG Yi,et al. Research on flexible peak shaving control strategy of thermal power unit coupled with molten salt heat storage system[J]. Proceedings of the CSEE,1-13[2024-10-19].https://doi.org/10.13334/j.0258-8013.pcsee.241471.
[15]赵大周,谢玉荣,张钟平,等.300 MW燃煤供热机组熔盐储热系统设计及经济性分析[J].综合智慧能源,2024,46(9):45-52.ZHAO Dazhou,XIE Yurong,ZHANG Zhongping,et al. Design and economic analysis of the molten salt heat storage system for a300 MW coal-fired heating unit[J].Integrated Intelligent Energy,2024,46(9):45-52.
[16]苗林,刘明,严俊杰.燃煤机组集成熔盐储热系统释热过程的灵活性提升潜力及能效分析[J/OL].中国电机工程学报,1-11[2024-10-19].https://doi.org/10.13334/j.0258-8013.pcsee.240275.MIAO Lin,LIU Ming,YAN Junji. Flexibility improvement potential and performance evaluation of coal-fired power plan integrated with molten salt thermal energy storage system during heat discharging process[J]. Proceedings of the CSEE,1-11[2024-10-19].https://doi.org/10.13334/j.0258-8013.pcsee.240275.
[17]李明成,孙春启,韩旭.火电机组耦合熔盐储热系统调峰性能研究[J].汽轮机技术,2024,66(3):198-202.LI Mingcheng,SUN Chunqi,HAN Xu. Research on peak shaving performance of thermal power unit coupled molten salt energy storage system[J]. Turbine Technology,2024,66(3):198-202.
[18]张微微.基于“抽汽蓄能+”火电机组深度调峰的经济性分析及系统优化[D].沈阳:东北电力大学,2024.ZHANG Weiwei. Economic analysis and system optimization of deep peak shaving of thermal power units based on"extraction and energy storage+"[D].Shenyang:Northeast Electric Power University,2024
[19]邹小刚,刘明,肖海丰,等.火电机组耦合熔盐储热深度调峰系统设计及性能分析[J].热力发电,2023,52(2):146-153.ZOU Xiaogang,LIU Ming,XIAO Haifeng,et al. Design and performance analysis of deep peak shaving system of thermal power units coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2):146-153.
[20]苗林,刘明,张可臻,等.集成电制热熔盐储热的燃煤发电系统热力性能研究[J].工程热物理学报,2023,44(11):2999-3007.MIAO Lin,LIU Ming,ZHANG Kezhen,et al. Thermodynamic analysis on the coal-fired power plant integrated with power-toheat molten salt thermal energy storage system[J]. Journal of Engineering Thermophysics,2023,44(11):2999-3007.
[21]罗海华,张后雷,刘文涛,等.基于熔盐蓄热的亚临界火电机组工业供热调峰技术[J].暖通空调,2020,50(10):71-75.LUO Haihua,ZHANG Houlei,LIU Wentao,et al. Industrial heating and peak shaving technology for subcritical thermal power units based on molten salt heat storage[J]. Heating Ventilating and Air Conditioning,2020,50(10):71-75.
[22]任景,程松,高敏,等.集成熔盐储热燃煤发电系统的灵活性与能耗特性分析[J].热能动力工程,2024,39(2):145-153.REN Jing,CHENG Song,GAO Min,et al. Analysis of flexibility and energy consumption characteristics of coal-fired power system integrated with molten salt thermal storage[J]. Journal of Engineering for Thermal Energy and Power,2024,39(2):145-153.
[23]王辉,李峻,祝培旺,等.应用于火电机组深度调峰的百兆瓦级熔盐储能技术[J].储能科学与技术,2021,10(5):1760-1767.WANG Hui,LI Jun,ZHU Peiwang,et al. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant[J]. Energy Storage Science and Technology,2021,10(5):1760-1767.
[24]宋晓辉,韩伟,王兴,等.基于高温熔盐储热系统的火电机组深度调峰方案对比及分析[J].热能动力工程,2023,8(11):63-74.SONG Xiaohui,HAN Wei,WANG Xing,et al. Comparison and analysis of deep peak shaving schemes for thermal power units based on high-temperature molten salt heat storage system[J]. Journal of Engineering for Thermal Energy and Power,2023,38(11):63-74.
[25]冀帅宇,段立强,王远慧,等.典型燃煤机组灵活调峰策略及性能研究[J].热力发电, 2023,52(9):94-103.JI Shuaiyu,DUAN Liqiang,WANG Yuanhui,et al. Research on flexible peak load regulation strategy and performance of typical coalfired units[J]. Thermal Power Generation, 2023, 52(9):94-103.
[26]张宇恒,宋晓辉,杨荣贵,等.基于再热蒸汽抽汽-熔盐储热的火电系统分析[J].动力工程学报,2024,44(3):447-454.ZHANG Yuheng,SONG Xiaohui,YANG Ronggui,et al. Performance of molten salt thermal energy storage system based on reheat steam extraction from coal-fired power plants[J]. Journal of Chinese Society of Power Engineering,2024,44(3):447-454.
[27]张可臻,刘明,赵永亮,等.燃煤机组集成再热蒸汽熔盐储热系统的运行灵活性与热力性能分析[J].工程热物理学报,2023,44(9):2331-2339.ZHNAG Kezhen,LIU Ming,ZHAO Yongliang,et al. Operation Flexibility and thermal performance analysis of integrated molten salt heat storage system extracting heat from the reheat steam for coal-fired power plants[J]. Journal of Engineering Thermophysics,2023,44(9):2331-2339.
[28]贾振国,王顺,管洪军,等.耦合熔盐储热系统的火电机组调峰性能与热经济性研究[J/OL].热力发电,2024,53(10):72-80.JIA Zhenguo, WANG Shun, GUAN Hongjun, et al. Study on the peaking performance and thermal economy of thermal power units coupled with molten salt thermal storage system[J]. Thermal Powergeneration,2024,53(10):72-80.
[29]王坚,王辉.火电厂抽汽储能深度调峰技术研究[J].电力勘测设计,2022,(6):30-34.WANG Jian, WANG Hui. Research on the energy storage technique by steam extraction from thermal power units used to deep load modulation[J]. Electric Power Survey&Design, 2022,(06):30-34.
[30]庞力平,张世刚,段立强.高温熔盐储能提高二次再热机组灵活性研究[J].中国电机工程学报, 2021,41(8):2682-2690.PANG Liping, ZHANG Shigang, DUAN Liqiang. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J].Proceedings of the CSEE,2021, 41(8):2682-2690.
[31]李德波,刘鹏宇,刘彦丰,等.新型电力系统规划下燃煤电厂锅炉机组的发展[J].广东电力,2022,35(7):3-13.LI Debo, LIU Pengyu, LIU Yanfeng, et al. Development of coalfired power plant boiler units under new power system planning[J].Guangdong Electric Power,2022,35(7):3-13.
[32]张显荣,徐玉杰,杨立军,等.多类型火电-储热耦合系统性能分析与比较[J].储能科学与技术, 2021,10(5):1565-1578.ZHANG Xianrong, XU Yujie, YANG Lijun, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5):1565-1578.
[33]李德波,孙超凡,冯永新,等.300 MW循环流化床气固流动及燃烧过程数值模拟研究及工程应用[J].广东电力,2018,31(7):56-65.LI Debo,SUN Chaofan,FENG Yongxin, et al. Numerical simulation research on gas-solid flow and combustion process of300 MW criculated fluidized bed and related engineering applications[J]. Guangdong Electric Power, 2018,31(7):56-65.
[34]黄书益,陈鸿,廖勇,等.锅炉智能吹灰优化建模及应用[J].广东电力,2022,35(7):114-121.HAUNG Shuyi,CHEN Hong,LIAO Yong,et al. Modelling and Application of intelligent boiler soot blowing optimization[J].Guangdong Electric Power,2022,35(7):114-121.
[35]张祝,陈国庆,周小明,等. 670 MW燃煤机组耦合熔盐储能系统方案设计及性能分析[J].热力发电,2024,53(3):89-98.ZHANG Zhu, CHEN Guoqing, ZHOU Xiaoming, et al. Scheme design and performance analysis for a 670 MW coal-fired unit coupled with molten salt energy storage system[J]. Thermal Power Generation, 2024, 53(3):89-98.
[36]张显荣,徐玉杰,杨立军,等.多类型火电-储热耦合系统性能分析与比较[J].储能科学与技术,2021,10(5):1565-1578.ZHANG Xianrong,XU Yujie,YANG Lijun,et al. Performance analysis and comparison of multiple types of thermal power thermal storage coupling systems[J]. Energy Storage Science and Technology,2021,10(5):1565-1578.
[37]刘金恺,鹿院卫,魏海姣,等.熔盐储热辅助燃煤机组调峰系统设计及性能对比[J].热力发电,2023,52(2):111-118.LIU Jinkai,LU Yuanwei,WEI Haijiao,et al. Design and performance comparison of peak shaving system for molten salt heat storage auxiliary coal-fired units[J]. Thermal Power Generation, 2023, 52(2):111-118.
[38] RICHTER M, OELJEKLAUS G, GORNER K.Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage[J]. Applied Energy, 2019, 236:607-621.
[39]侯丹.基于Aspen Plus的?分析在火电厂清洁生产实践中的应用[D].大连:大连理工大学, 2011.HOU Dan. Exergy analysis applied in thermal power plant,cleaner product practice based on Aspen Plus[D]. Dalian:Dalian University of Technology,2011.
Basic Information:
DOI:10.19944/j.eptep.1674-8069.2025.02.007
China Classification Code:TM621
Citation Information:
[1]尹秋钰,李德波,方立军等.燃煤电厂耦合熔盐储热调峰特性模拟研究[J].电力科技与环保,2025,41(02):240-251.DOI:10.19944/j.eptep.1674-8069.2025.02.007.
Fund Information:
南网科技公司重点支持项目(NYJS2020KJ005)