China Energy Shouguang power generation Co., Ltd.;State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, China Energy Science and Technology Research Institute Co., Ltd.;Xi'an Jiaotong University;
[Objective] In order to study the characteristics of combustion instability and hydrodynamic changes caused by coal-fired boilers participating in deep peak shaving when the boiler is in a low-load state, and to improve the safety of boiler operation, [Methods] In this paper, a 670 MW supercritical boiler is taken as the research object. The internal combustion condition of the boiler is numerically simulated. At the same time, combined with the hydrodynamic characteristics calculation based on the component pressure method, the hydrodynamic characteristics of the water wall of the boiler under the maximum continuous evaporation condition of the 100% boiler and the low-load 40% heat consumption rate acceptance condition are analyzed. [Results] The results show that the mass flow rate distribution trend of each loop of the vertical water wall in the upper part of the boiler under the two working conditions is similar, and both show negative flow response characteristics. Under the condition of maximum continuous evaporation of 100% boiler, the maximum temperature of each loop of vertical water wall is 392.75 ℃, the maximum temperature difference is 8.75 ℃, the deviation of steam temperature is not large, and the operation of water wall is safe. Under the condition of low load 40% heat rate acceptance, the working medium at the outlet of the water wall is in the two-phase region, and the temperature of each loop is 330.55 ℃ under the corresponding pressure. There is no over-temperature phenomenon, and the water wall can operate safely. [Conclusion] According to the characteristics of negative flow conditions, it is suggested to adopt more refined flow control mode or optimize the layout of boiler water wall pipes. For the case of small mass flow rate of the back wall, special attention should be paid to the cooling effect of the back wall during operation.
21 | 0 | 3 |
Downloads | Citas | Reads |
[1]任旭.深度调峰工况下切向燃煤锅炉二次风动力优化研究[D].呼和浩特:内蒙古工业大学,2023.REN Xu. Optimization study of secondary wind power of tangential coal-fired boiler under deep peaking condition[D]. Hohhot:Inner Mongolia University of Technology,2023.
[2]武艺,李然,张晓明.新型能源体系目标下中国气电发展趋势及应对策略[J/OL].油气储运,1-12[2025-02-06]. http://kns.cnki.net/kcms/detail/13.1093.TE.20241126.1715.002.html.WU Yi, LI Ran, ZHANG Xiaoming. Development trend of China's gas and electricity under the goal of new energy system and response strategy[J/OL]. Oil and Gas Storage and Transportation,1-12[2025-02-06]. http://kns. cnki. net/kcms/detail/13.1093.TE.20241126.1715.002.html.
[3]张美君.燃煤电厂锅炉机组深度调峰运行优化方法研究[J].电气技术与经济,2024(9):295-297.ZHANG Meijun. Research on optimization method of deep peaking operation of boiler units in coal-fired power plants[J]. Electrical Technology and Economy, 2024(9):295-297.
[4]王志勇,李维腾,堵根旺,等.自然循环锅炉深度调峰时水冷壁汽水两相流动不稳定特性计算及安全分析[J].热力发电,2024,53(11):119-129.WANG Zhiyong, LI Weiteng, JIE Genwang, et al. Calculation and safety analysis of unsteady characteristics of water-cooled wall vapor-water two-phase flow during deep peaking of natural circulation boiler[J]. Thermal Power Generation, 2024, 53(11):119-129.
[5]胡明,许天瑶,刘忠轩,等.超临界W火焰锅炉深度调峰运行试验研究[J].锅炉技术,2024,55(5):21-25+78.HU Ming, XU Tianyao, LIU Zhongxuan, et al. Experimental study on deep peaking operation of supercritical W-flame boiler[J].Boiler Technology, 2024, 55(5):21-25+78.
[6]关朋远.煤粉锅炉超低负荷运行的技术问题和应对措施[J].电器工业,2023(12):66-69+74.GUAN Pengyuan. Technical problems and countermeasures of ultra-low load operation of pulverized coal boiler[J]. Electrical Appliance Industry, 2023(12):66-69+74.
[7]曹霆,郑沧海,李永利,等.超临界锅炉低负荷运行水动力及壁温特性分析[J].动力工程学报,2024,44(11):1680-1688+1711.CAO Ting, ZHENG Canghai, LI Yongli, et al. Hydrodynamic and wall temperature characterization of supercritical boiler in low load operation[J]. Journal of Power Engineering, 2024, 44(11):1680-1688+1711.
[8]陈智海,谭鹏,吴凡,等.基于锅-炉耦合的超超临界锅炉水冷壁流量分配及工质出口温度分布研究[J/OL].发电技术,1-9[2025-02-06]. http://kns. cnki. net/kcms/detail/33.1405.TK.20241101.1704.004.html.CHEN Zhihai, TAN Peng, WU Fan, et al. Study on water-cooled wall flow distribution and mass outlet temperature distribution in ultra-supercritical boilers based on pot-furnace coupling[J/OL].Power Generation Technology, 1-9[2025-02-06]. http://kns.cnki.net/kcms/detail/33.1405.TK.20241101.1704.004.html.
[9]徐荣田,杨冬. 1 000 MW超超临界塔式锅炉水冷壁水动力特性计算及壁温分布研究[J].锅炉技术,2023,54(3):22-29.XU Rongtian, YANG Dong. Calculation of hydrodynamic characteristics of water-cooled wall and wall temperature distribution in 1 000 MW ultra-supercritical tower boiler[J]. Boiler Technology, 2023, 54(3):22-29.
[10]周科,何敏强,牛田田,等.超临界660 MW褐煤锅炉深度调峰负荷水动力特性研究[J].热力发电,2022,51(9):88-95.ZHOU Ke, HE Minqiang, NIU Tiantian, et al. Hydrodynamic characterization of supercritical 660 MW lignite boiler with deep peaking load[J]. Thermal Power Generation, 2022, 51(9):88-95.
[11]杨浩昱,张西容,李维腾,等.超超临界垂直管圈锅炉水冷壁汽温偏差及节流圈调整方案研究[J].动力工程学报,2023,43(5):526-534+662.YANG Haoyu, ZHANG Xirong, LI Weiteng, et al. Study on vapor temperature deviation of water-cooled wall in ultra-supercritical vertical coil boiler and adjustment scheme of throttle ring[J].Journal of Power Engineering, 2023, 43(5):526-534+662.
[12]刘佳伦,张永海,陈勇强.低参数条件下并联多通道间汽-水两相流密度波不稳定性分析[J].动力工程学报,2024,44(1):15-24.LIU Jialun, ZHANG Yonghai, CHEN Yongqiang. Analysis of density wave instability of vapor-water two-phase flow between parallel multichannels under low parameter conditions[J]. Journal of Power Engineering, 2024, 44(1):15-24.
[13]卿浩,周妍君,宋园园,等.超临界CFB锅炉深度调峰跨临界过程中水冷壁动态特性的试验研究[J].热力发电,2023,52(9):29-38.QING Hao, ZHOU Yanjun, SONG Yuanyuan, et al. Experimental study on dynamic characteristics of water-cooled wall during deep peaking transcritical process in supercritical CFB boiler[J].Thermal Power Generation, 2023, 52(9):29-38.
[14]欧阳子区,王宏帅,吕清刚,等.煤粉锅炉发电机组深度调峰技术进展[J].中国电机工程学报,2023,43(22):8772-8790.OUYANG Ziqu, WANG hongshuai, LYU Qinggang, et al.Progress of deep peaking technology for pulverized coal boiler generating units[J]. Chinese Journal of Electrical Engineering,2023, 43(22):8772-8790.
[15]王虎,范浩东,辛胜伟,等.超临界循环流化床锅炉深度调峰技术研究与应用[J].洁净煤技术,2022,28(12):11-17.WANG Hu, FAN Haodong, XIN Shengwei, et al. Research and application of deep peaking technology for supercritical circulating fluidized bed boiler[J]. Clean Coal Technology, 2022,28(12):11-17.
[16]党岳,樊小朝,王志强,等.超临界机组灵活性调峰及低负荷运行优化技术研究[J].锅炉技术,2022,53(6):61-64.DANG Yue, FAN Xiaozhao, WANG Zhiqiang, et al. Research on the optimization technology of supercritical unit flexibility peak shifting and low load operation[J]. Boiler Technology, 2022, 53(6):61-64.
[17]万李,杨冬,董乐,等.超超临界循环流化床锅炉水动力试验研究与理论计算[J].电力科技与环保,2019,35(2):13-22.WAN Li, YANG Dong, DONG Le, et al. Hydrodynamic experimental study and theoretical calculation of ultrasupercritical circulating fluidized bed boiler[J]. Power Science and Technology and Environmental Protection, 2019, 35(2):13-22.
[18]吴鹏举,朱超,万李,等.超临界机组锅炉20%负荷深度调峰水动力实炉试验研究[J].热力发电,2021,50(4):59-66.WU Pengju, ZHU Chao, WAN Li, et al. Experimental study on hydrodynamic real furnace for 20%load deep peaking of supercritical unit boiler[J]. Thermal Power Generation, 2021, 50(4):59-66.
[19]张广才,周科,柳宏刚,等.某超临界600 MW机组直流锅炉深度调峰实践[J].热力发电,2018,47(5):83-88.ZHANG Guangcai, ZHOU Ke, LIU Honggang, et al. Practice of deep peaking of DC boiler in a supercritical 600 MW unit[J].Thermal Power Generation, 2018, 47(5):83-88.
[20]陈辉,黄林滨,李朝兵,等.二次再热锅炉30%负荷下燃烧优化调整研究[J].电力科技与环保,2023,39(2):129-137.CHEN Hui, HUANG Linbin, LI Chaobing, et al. Research on combustion optimization adjustment under 30%load of secondary reheat boiler[J]. Power Science and Technology and Environmental Protection, 2023, 39(2):129-137.
[21]刁云鹏,李文远,张良,等.直流锅炉侧墙水冷壁出口集箱裂纹原因分析[J].电力科技与环保,2018,34(4):56-57.DIAO Yunpeng, LI Wenyuan, ZHANG Liang, et al. Analysis of the cause of cracks in the outlet header box of DC boiler sidewall water-cooled wall[J]. Electric power science and technology and environmental protection, 2018, 34(4):56-57.
[22]张西容,宋园园,周妍君,等.超临界循环流化床锅炉水冷壁吸热偏差计算及深度调峰水动力特性[J].中国电机工程学报,2024,44(15):6047-6057.ZHANG Xirong, SONG Yuanyuan, ZHOU Yanjun, et al.Calculation of heat absorption deviation of water-cooled wall in supercritical circulating fluidized bed boiler and hydrodynamic characteristics of deep peaking[J]. Chinese Journal of Electrical Engineering, 2024, 44(15):6047-6057.
[23]庞力平,袁虎,丘文生,等.深度调峰锅炉水动力特性分析[J].化工进展,2023,42(4):1708-1718.PANG Liping, YUAN Hu, QIU Wensheng, et al. Hydrodynamic characterization of deep peaking boiler[J]. Chemical Progress,2023, 42(4):1708-1718.
[24]宋园园,郭泽瑞,安宁,等. 350 MW超临界锅炉低负荷深度调峰水动力实炉测试与计算分析[J].洁净煤技术,2024,30(9):33-42.SONG Yuanyuan, GUO Zerui, AN Ning, et al. Hydrodynamic test and calculation analysis of 350 MW supercritical boiler with low load deep peaking hydrodynamics[J]. Clean Coal Technology,2024, 30(9):33-42.
[25]杜宝仓,王东,马国伟,等. 660 MW锅炉低负荷下燃烧特性的数值模拟研究[J].化工机械,2024,51(5):696-701.DU Baocang, WANG Dong, MA Guowei, et al. Numerical simulation of combustion characteristics of 660 MW boiler under low load[J]. Chemical Machinery, 2024, 51(5):696-701.
[26]黄丹,曾小义,冷冰川,等.超临界W型火焰锅炉结构效应导致前墙水冷壁温差偏大问题的研究与治理[J].锅炉技术,2024,55(5):72-78.HUANG Dan, ZENG Xiaoyi, LENG Bingchuan, et al. Research and treatment of the large temperature difference of water cooling wall in front wall caused by structural effect of supercritical Wtype flame boiler[J]. Boiler Technology, 2024, 55(5):72-78.
[27]李维腾,郭泽瑞,韩磊,等.超临界循环流化床锅炉深度调峰时水冷壁流动不稳定特性计算分析[J].西安交通大学学报,2025,59(1):68-77+92.LI Weiteng, GUO Zerui, HAN Lei, et al. Calculation and analysis of flow instability characteristics in water wall of supercritical circulating fluidized bed boiler during deep peak shaving[J].Journal of Xi'an Jiaotong University, 2024, 59(1):68-77+92.
Basic Information:
DOI:10.19944/j.eptep.1674-8069.2025.02.014
China Classification Code:TM621.2
Citation Information:
[1]谢军,侍述成,王磊等.超临界燃煤锅炉低负荷水冷壁水动力特性研究[J].电力科技与环保,2025,41(02):312-322.DOI:10.19944/j.eptep.1674-8069.2025.02.014.
Fund Information:
国家重点研发计划项目(2024YFB4104901)