nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.41 206-216
Liquid cooling model design and multi-objective optimization of battery parameters based on liquid metal cooling
Email: xmzhou@hhu.edu.cn;
DOI: 10.19944/j.eptep.1674-8069.2025.02.004
摘要:

【目的】针对锂电池高倍率放电产热问题,设计一种基于液态金属冷却的高效液冷方案,并通过多目标优化提升散热性能与系统稳定性。【方法】采用镓基液态金属作为冷却剂,设计单入口双出口液冷回路;利用Fluent软件进行数值模拟,分析冷却剂流速、管道高度、分支递增宽度及倾角对散热性能的影响;结合正交实验法筛选关键参数,并基于NSGA-II多目标遗传算法优化参数组合。【结果】优化后最优参数组合为冷却剂流速0.42 m/s、分支递增宽度0.13 mm、倾角87.38°、管道高度5.76 mm,系统最大温度312.66 K,温差11.66 K,压降0.712 kPa。与初始方案相比,最大温度降低0.53%,温差降低8.04%,压降略有增加。【结论】液态金属冷却显著提升散热效率,流速与管道高度对温度控制影响最大;NSGA-II算法可实现散热性能与压降的均衡优化,为高倍率电池热管理提供有效解决方案。

Abstract:

[Objective] To address the heat generation issue of lithium batteries under high-rate discharge, a liquidcooling scheme based on liquid metal was designed, aiming to enhance thermal performance and system stabilitythrough multi-objective optimization.[Methods] A single-inlet double-outlet cooling loop using gallium-based liquid metalwas proposed. Numerical simulations via Fluent were conducted to analyze the effects of coolant velocity, channelheight, branch width increment, and inclination angle on thermal performance. Orthogonal experiments and the NSGA-IImulti-objective genetic algorithm were employed for parameter screening and optimization. [Results]The optimalparameters were determined as coolant velocity 0.42 m/s, branch width increment 0.13 mm, inclination angle 87.38°,and channel height 5.76 mm. The optimized system achieved a maximum temperature of 312.66 K, temperaturedifference of 11.66 K, and pressure drop of 0.712 kPa. Compared to the initial design, the maximum temperature andtemperature difference decreased by 0.53% and 8.04%, respectively, with a slight increase in pressure drop.[Conclusion] Liquid metal cooling significantly improves heat dissipation efficiency, with velocity and channel heightbeing dominant factors. The NSGA-II algorithm effectively balances thermal performance and pressure drop, offering apractical solution for high-rate battery thermal management..

References

[1]张博,张贺贺,马妍姣.钾离子电池硬碳负极材料研究进展[J].电力科技与环保,2024,40(3):221-236.ZHANG Bo,ZHANG Hehe,MA Yanjiao. Research progress of hard carbon anode materials for potassium-ion batteries[J].Electric Power Technology and Environmental Protection, 2024, 40(3):221-236.

[2] DUAN J,ZHAO J,LI X,et al.Modeling and analysis of heat dissipation for liquid cooling Lithium-Ion batteries[J].Energies,2021,14(14):4187.

[3] PATEL J R,RATHOD M K. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries[J]. Journal of power sources,2020,480:228820.

[4] CHEN T,CAI L,WEN X T,et al. Experimental research and energy consumption analysis on the economic performance of a hybrid-power gas engine heat pump with LiFePO4 battery[J]Energy,2021,214:118913.

[5]宋旭,孙楠楠,曹恒超,等.基于并联蛇形流道的动力电池冷媒直冷热管理系统研究[J].储能科学与技术,2024,13(8):2726-2736.SONG Xu,SUN Nannan,CAO Hengchao,et al. Research on a power battery thermal management system using direct refrigerant cooling with parallel serpentine flow paths[J]. Energy Storage Science and Technology,2024,13(8):2726-2736.

[6] COSLEY M R. Battery thermal management system[C].Telecommunications Energy Conference IEEE, 2004:38-45.

[7]王世学,张宁,高明.动力汽车用锂电池热管理系统仿真分析[J].热科学与技术,2016,15(1):40-45.WANG Shixue,ZHANG Ning,GAO Ming. Simulation analysis of lithium-ion battery thermal management in EV[J]. Journal of Thermal Science and Technology,2016,15(1):40-45.

[8]李锋,郎文嵩,焦志浩,等.电池热管理系统的应用与试验研究[J].重型汽车,2024,(2):31-32.

[9]黄恒,李洋,黄正,等.基于双向加热膜的软包电池低温热管理研究[J].工程热物理学报,2023,44(12):3332-3340.HUANG Heng,LI Yang,HUANG Zheng,et al. Research on lowtemperature thermal management of pack-battery based on bidirectional heating film[J]. Journal of Engineering Thermophysics,2023,44(12):3332-3340.

[10] ZHAO G,WANG X,NEGNEVITSKY M,et al. An up-to-date review on the design improvement and optimization of the liquidcooling battery thermal management system for electric vehicles[J]. Applied Thermal Engineering,2023,219:119626.

[11] OSMANI K,ALKHEDHER M,RAMADAN M,et al. Recent progress in the thermal management of lithium-ion batteries[J].Journal of Cleaner Production,2023,389:136024.

[12]李哲,张华,盛雷.新能源汽车浸没式锂离子电池冷却技术研究进展[J].制冷学报,2024,45(3):38-49.LI Zhe,ZHANG Hua,SHENG Lei. Research progress of immersed cooling technology for lithium-ion batteries in new energy vehicles[J]. Journal of Refrigeration,2024,45(3):38-49.

[13]陈素华,白莹.锂离子动力电池热失控机理及热管理技术研究进展[J].中国科学基金,2023,37(2):187-198.CHEN Suhua,BAI Ying. Thermal runway mechanism and research progress on thermal management of lithium-ion power batteries[J]. Bulletin of National Natural Science Foundation of China,2023,37(2):187-198.

[14] XU X M,SUN X D,HU D H,et al. Research on heat dissipation performance and flow characteristics of air-cooled battery pack[J]. International Journal of Energy Research,2018,42(11):3658-3671.

[15] ZHI M,FAN R,YANG X,et al. Recent research progress on phase change materials for thermal management of lithium-ion batteries[J].Journal of Energy Storage,2022,45:103694.

[16]杨寒雪,张冠华,赵长颖,等.基于复合相变材料的锂电池热管理系统研究进展[J].能源科技,2023,21(1):56-61.YANG Hanxue,ZHANG Guanhua,ZHAO Changying,et al.Research on the progress of thermal management system for lithium battery based on composite phase change materials[J].Energy Science and Technology,2023,21(1):56-61.

[17] THAWKAR V,DHOBLE A S.A review of thermal management methods for electric vehicle batteries based on heat pipes and PCM[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(2):90.

[18] ZHANG X H,LI Z,LUO L G,et al. A review on thermal management of lithium-ion batteries for electric vehicles[J].Energy,2022,238:121652.

[19] SHEN X,CAI T,HE C,et al. Thermal analysis of modified Zshaped air-cooled battery thermal management system for electric vehicles[J].Journal of Energy Storage,2023,58:106356.

[20]唐浩,杨国华,李卿.风光互补发电系统低碳效益建模研究[J].电力科技与环保,2016,32(5):47-50.TANG Hao,YANG Guohua,LI Qing. Modeling of wind-solar hybrid generation system low-carbon benefits[J]. Electric Power Technology and Environmental Protection,2016,32(5):47-50.

[21] ZHANG W,LIANG Z,LING G,et al.Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system[J]. The Journal of Energy Storage,2021,41:102849.

[22] ZHANG Z,WEI K.Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries[J].Applied Thermal Engineering,2020,166:114660.

[23] LIU F,CHEN Y,QIN W,et al.Optimal design of liquid cooling structure with bionic leaf vein branch channel for power battery[J]. Applied Thermal Engineering,2023,218:119283.

[24]安风霞,杨玉,吴帅帅,等.印刷电路板换热器芯体尺寸多目标优化研究[J].电力科技与环保,2023,,39(4):345-352.AN Fengxia,YANG Yu,WU Shuaishuai,et al. Multi-objective optimization of the core size of a printed circuit heat exchanger[J].Electric Power Technology and Environmental Protection,2023,39(4):345-352.

[25]汪朝晖,熊肖,高全杰,等.基于仿蜘蛛网流道结构设计的圆柱形锂电池热管理系统性能研究[J].机械工程学报,2023,59(22):150-162.WANG Zhaohui,XIONG Xiao,GAO Quanjie,et al. Performance study of cylindrical lithium battery thermal management system based on the design of spider web-like flow channel structure[J].Journal of Mechanical Engineering,2023,59(22):150-162.

[26] DENG Y,JIANG Y,LIU J. Low-melting-point liquid metal convective heat transfer:A review[J]. Applied Thermal Engineering,2021,193:117021.

[27] MUHAMMAD A,SELVAKUMAR D,IRANZO A,et al.Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials[J]. Journal of Thermal Analysis and Calorimetry,2020,141:289-300.

[28] LIU Y,CHEN H F,ZHANG H W,et al. Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant[J]. International Journal of Heat and Mass Transfer,2015,80:605-613.

[29]陈吉翔,殷戈,陈国庆,等.铅铋合金/硅酸锆颗粒双介质相变储热性能及演化规律数值研究[J].电力科技与环保,2023,39(5):457-464.CHENG Jixiang,YIN Ge,CHENG Guoqing,et al.Numerical study on the heat storage performance and evolution law of leadbismuth alloy/zirconium silicate particles dual-media phase change[J]. Electric Power Technology and Environmental Protection,2023,39(5):457-464.

[30] YANG X H,TAN S C,LIU J. Thermal management of Li-ion battery with liquid metal[J]. Energy conversion and management,2016,117:577-585.

[31] DENG Yueguang,ZHANG Manman,JIANG Yi,et al.Two-stage multichannel liquid-metal cooling system for thermal management of high-heat-flux-density chip array[J]. Energy Conversion and Management,2022,259:115591.

[32] LIU H L,AN X K,WANG C S.Heat transfer performance of T-Y type micro-channel heat sink with liquid GaInSn coolant[J].International Journal of Thermal Sciences,2017,120:203-219.

[33] WANG Ningbo,LI Congbo,LI Wei,et al. Heat dissipation optimization for a serpentine liquid cooling battery thermal management system:An application of surrogate assisted approach[J].Journal of Energy Storage,2021(40):102771.

Basic Information:

DOI:10.19944/j.eptep.1674-8069.2025.02.004

China Classification Code:TM912

Citation Information:

[1]杨利伟,马凯伦,周小明.基于液态金属冷却的电池液冷方案设计及参数多目标优化[J].电力科技与环保,2025,41(02):206-216.DOI:10.19944/j.eptep.1674-8069.2025.02.004.

Fund Information:

国家自然科学基金项目(12372261); 国家能源集团科技项目(DY2023FK078); 中国科学院微重力重点实验室课题(NML202305)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search