54 | 0 | 23 |
Downloads | Citas | Reads |
【目的】为优化燃气联合循环机组的调峰性能,解决机组日开夜停模式下的夜间工业蒸汽供应问题,并实现能源梯级利用与热电联产。【方法】本文设计一种新型空气对流耦合耐火砖固体蓄热系统,通过建立空气对流耦合耐火砖蓄热的数值仿真模型,分析预热段、蒸发段和过热段的相变换热、对流传热及导热特性;采用计算流体动力学模拟结合实验验证,探究蓄热体在蓄/放热过程中热扩散的变化趋势与差异,并利用网格无关性验证确保模拟精度。【结果】研究表明,蓄热系统单元在4 h内储热和放热量均达到80%以上,最大平均储热速率和放热速率分别为15.9 kW/m3与22.0 kW/m3;能够快速高效地储存蒸汽热量和将热量释放给蒸汽,实验与模拟结果吻合良好,验证了技术可行性。释能阶段的传热温压显著高于储能阶段,表明系统释能效率更高。【结论】该装置可高效存储和释放蒸汽热量,提升燃气机组调峰能力,减少对燃气锅炉的依赖,同时通过储热实现深度调峰与热能稳定供应,可有效的解决负荷过低对机组运行安全性的影响,具有显著的经济效益与应用价值。
Abstract:[Objective] In this paper, a new type of refractory brick solid heat storage system is designed to optimize thepeaking performance of gas-fired combined cycle units, to solve the problem of nighttime industrial steam supply underthe mode of daytime on/nighttime off of the units, and to realize the energy laddering utilization and cogeneration.[Methods] By establishing a numerical simulation model of steam-coupled refractory bricks thermal storage, the phasechange heat transfer are analyzed, convective heat transfer and thermal conductivity characteristics of the preheat,evaporation and superheat sections. Computational fluid dynamics simulation is combined with experimental validationto investigate the trends and differences of thermal diffusion in the heat storage/exothermic process of the heat storagebody. The mesh-independence validation is applied to ensure the accuracy of the simulation. [Results] The heatstorage system unit reaches more than 80% of heat storage and heat release within 4 h. The maximum average heatstorage rate and heat release rate are 15.9 kW/m3 and 22.0 kW/m3, respectively. It can quickly and efficiently store theheat of the steam and release the heat to the steam, and the experimental and simulation results are in good agreementwith the simulation results, which verifies the feasibility of the technology. The heat transfer temperature and pressure inthe energy release stage is significantly higher than that in the energy storage stage, indicating that the system is moreefficient in releasing energy. [Conclusion] The device can efficiently store and release steam heat, enhance the peakshifting capability of gas-fired units, reduce the dependence on gas boilers, and at the same time realize deep peakshifting and stable supply of thermal energy through heat storage, which can effectively solve the impact of low load ofcoal-fired boilers on the operational safety of the units, and it has significant economic benefits and popularization value.
[1]李亚强.热电厂高温相变蓄热装置蓄放热特性的研究[D].吉林:东北电力大学,2022.LI Yaqiang. Study on charging and discharging characteristics of high-temperature phase change heat storage device in thermal power plants[D]. Jilin:Northeast Electric Power University, 2022.
[2]牛文迪.电池储能参与电网削峰填谷优化策略研究[D].哈尔滨:哈尔滨工业大学, 2018.NIU Wendi. Research on optimal strategy of battery energy storage participating in peak shaving and valley filling of power grid[D].Harbin:Harbin Institute of Technology, 2018.
[3]张怡,李毅,韦珑珅,等.应用于蒸汽供热的蓄热技术研究[J].热力发电.2023,52(2):73-78.ZHANG Yi,LI Yi,WEI Longshen,et al. Research on energy storage technology in steam heating[J]. Thermal Power Generation,2023,52(2):73-78.
[4]李丹东.蓄热式电锅炉的风电消纳研究[J].有色设备. 2021,35(5):41-46.LI Dandong. Research on wind power consumption by thermal storage electric boiler[J]. Nonferrous Metallurgical Equipment,2021,35(5):41-46.
[5] YU S, HAN D, HE W, et al. Analysis and optimization of transient heat dissipation characteristics of high power resistors with a sensible heat storage method. Applied Thermal Engineering, 2023,226, 120246.
[6] DSILVA W, RAJKUMAR V, SUGANTHI L, et al. Studies on latent heat energy storage(LHES)materials for solar desalination application-focus on material properties, prioritization, selection and future research potential. Solar Energy Materials and Solar Cells, 2019, 189, 149-165.
[7] FENG Y, ZHOU T, KONG H, et al. Evaluation of thermodynamic and kinetic properties of carbide slag for fluidized thermochemical heat storage. Journal of Energy Storage, 2022, 56, 105855.
[8] KOCAK B, FERNANDEZ A I, PAKSOY H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209, 135-169.
[9]刘金恺,鹿院卫,魏海姣,等.熔盐储热辅助燃煤机组调峰系统设计及性能对比[J].热力发电, 2023,52(2):111-118.LIU Jinkai, LU Yuanwei, WEI Haijiao, et al. Design and performance comparison of peak shaving system of coal-fired unit aided by molten salt heat storage[J]. Thermal Power Generation,2023,52(2):111-118.
[10]周宇涵.熔盐蓄热供热技术研究与示范项目[J].区域供热,2021,(3):129-133.ZHOU Yuhan. Molten Salt Thermal Storage Heating Technology Research and Demonstration Project[J]. District Heating, 2021, 3:129-133.
[11]梁爽,徐耀祖,商向东,等.基于固体蓄热材料的蓄热过程分析[J].节能技术. 2019,(6):545-548.LIANG Shuang, XU Yaozu, SHANG Xiangdong, et al. Analysis of Heat Storage Process based on Solid Heat Storage Materials[J].Energy Conservation Technology, 2019, 37(06):545-548.
[12]管程瑶.高温显热蓄热条件下的气液分层流动沸腾不稳定性特征研究[D].杭州:浙江大学, 2021.GUAN Chengyao. Study on gas-liquid stratified flow boiling instability characteristics under high-temperature sensible heat storage conditions[D]. Hangzhou:Zhejiang University, 2021.
[13] CARDENAS B, LEON N. High temperature latent heat thermal energy storage:phase change materials,design considerations and performance enhancement techniques[J]. Renewable and Sustainable Energy Reviews, 2013, 27, 724-737.
[14] NLF A , KMAN A , JFHA B, et al. Development of an electric arc furnace steel slag-based ceramic material for high temperature thermal energy storage applications[J]. Journal of Energy Storage,2022, 51, 104408.
[15] EGGERS J, HEYDE M, THAELE S, et al. Design and performance of a long duration electric thermal energy storage demonstration plant at megawatt-scale. Journal of Energy Storage. 2022, 55,105780.
[16] KHIMENKO A, TIKHOMIROV D, VASILYEV A, et al.Numerical simulation of the thermal state and selecting the shape of air channels in heat-storage cells of electric-thermal storage.Energy Reports, 2022, 8, 1450-1463.
[17]吴考阳.固体蓄热新型换热方式研究[D].石家庄:河北建筑工程学院, 2021.WU Kaoyang. Research on new heat exchange methods for solid heat storage[D]. Shijiazhuang:Hebei University of Architecture and Civil Engineering, 2021.
[18]张艳刚.固体蓄热体组温升/温降一致性研究[D].石家庄:石家庄铁道大学, 2020.ZHANG Yangang. Research on temperature rise/fall consistency of solid heat storage units[D]. Shijiazhuang:Shijiazhuang Tiedao University, 2020.
[19]王倩蓉,李正贵,卢昌燊,等.翅片式相变储能器内赤藻糖醇蓄热性能研究[J].热能动力工程,2021,36(2):49-56.WANG Qianron,LI Zhenggui,LU Changshen,et al. Study on the thermal storage performance of erythritol in a fin type phase change energy storage device[J]. Journal of Engineering for Thermal Energy and Power,2021,36(2):49-56.
[20] RAHMATULLAH Y,WEN T. Lee model based numerical scheme for steady vapor chamber simulations. International Journal of Heat and Mass Transfer, 2023, 201, 123636.
[21]陶文铨.传热学[M].北京:高等教育出版社,2004.TAO Wenquan. Heat transfer[M]. Beijing:Higher Education Press, 2004.
[22]孔珑.工程流体力学[M].北京:中国电力出版社,1998.KONG Long. Engineering fluid mechanics[M]. Beijing:China Electric Power Press, 1998.
[23]窦克森.管道沿程摩擦阻力系数测量研究[D].青岛:中国石油大学(华东),2016.DOU Kesen. Measurement study on frictional resistance coefficient of pipelines[D]. Qingdao:China University of Petroleum(East China), 2016.
[24]鲁博辉,师志成,张永学,等.石蜡/Fe3O4纳米颗粒复合相变材料在管壳式储热单元中的储/放热性能研究[J].储能科学与技术,2021,10(5):1709-1719.LU Bohui,SHI Zhicheng,ZHANG Yongxue,et al. Investigation of the charging and discharging performance of paraffin/nanoFe3O4 composite phase change material in a shell and tube thermal energy storage unit[J]. Energy Storage Science and Technology,2021,10(5):1709-1719.
[25]李浩天.内管可移动的卧式相变储热器性能优化的模拟研究[D].济南:山东大学,2023.LI Haotian. Simulation study on performance optimization of horizontal phase change thermal storage device with movable inner tube[D]. Jinan:Shandong University, 2023.
Basic Information:
DOI:10.19944/j.eptep.1674-8069.2025.02.005
China Classification Code:TK124;TM611.3
Citation Information:
[1]宋艳梅,杨豫森,王欣然等.空气对流耦合耐火砖蓄热传热特性研究[J].电力科技与环保,2025,41(02):217-228.DOI:10.19944/j.eptep.1674-8069.2025.02.005.
Fund Information:
中国华能集团有限公司总部科技项目(HNKJ22-HF31-01)