nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.41 173-182
Comparison of heat transfer characteristics between air-cooled and liquidcooled energy storage battery modules
Email: fj_zcc@163.com;csu.biao@163.com;13850659031@139.com;
DOI: 10.19944/j.eptep.1674-8069.2025.02.001
English author unit:

Fujian LongKing Co., Ltd.;School of Metallurgy, Northeastern University;Fujian Longking Nest Energy Storage Technology Co., Ltd.;

Abstract:

[Objective] During the operation of lithium-ion energy storage batteries, a large amount of heat is generated,and high temperatures can lead to thermal runaway, affecting battery safety. The thermal management system is a keyfactor affecting the stability and efficiency of lithium-ion energy storage batteries. [Methods] Using numerical simulationmethods, the heat transfer characteristics of parallel air-cooled and liquid-cooled battery modules are quantitativelycompared and discussed, including heat transfer performance, flow resistance performance, overall flow heat transferperformance, and the influence of ambient temperature. [Results] The results show that when considering themaximum temperature and maximum temperature difference of the battery module, there is a threshold for thetemperature difference between the inlet and outlet of the cooling medium in the selection between air-cooled and liquid-cooled methods. The overall temperature uniformity of the liquid-cooled method is better than that of air-cooled, with atemperature difference of only 0.5 ℃ between each cell, while air-cooled shows 6.1 ℃. The heat transfer performance ofthe liquid-cooled method is better than that of air-cooled, while the flow resistance performance of the liquid-cooledmethod is inferior to that of air-cooled. However, overall, the comprehensive flow heat transfer performance of the liquid-cooled method is better than that of air-cooled, and the performance advantage gradually increases with the increase incooling medium flow rate. In the environment temperature range of 0 ℃ to 30 ℃, the liquid-cooled method has astronger ability to adapt to environmental temperature changes than air-cooled, with its heat transfer performance beingless affected by environmental temperature, resulting in a maximum temperature increase of only 1.1 ℃. [Conclusion] Theresearch methods and results described in this paper can provide references for related research, which is conducive to thefurther optimization of energy storage cooling methods.

KeyWords: battery module;air-cooled;liquid-cooled;heat transfer characteristics;numerical simulation
References

[1]安富强,赵洪量,程志,等.纯电动车用锂离子电池发展现状与研究进展[J].工程科学学报,2019,41(1):22-42.AN Fuqiang, ZHAO Hongliang, CHEN Zhi, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1):22–42.

[2]朱法华,徐静馨,潘超,等.煤电在碳中和目标实现中的机遇与挑战[J].电力科技与环保,2022,38(2):79-86.ZHU Fahua, XU Jingxin, PAN Chao, et al. Opportunities and challenges of coal power industry in the achievement of car-bon neutrality goal[J]. Electric Power Technology and Environmental Protection, 2022, 38(2):79-86.

[3]王志轩.碳达峰、碳中和目标实现路径与政策框架研究[J].电力科技与环保,2021,37(3):1-8.WANG Zhixuan. Research on the pathway and policy framework of achieving carbon peak and carbon neutrality[J]. Electric Power Technology and Environmental Protection, 2021, 37(3):1-8.

[4] HUA Y, ZHOU S, CUI H, et al. A comprehensive review on inconsistency and equalization technology of lithium-ion battery for electric vehicles[J]. International Journal of Energy Research,2020, 44(14):11059-11087.

[5] DUAN J B, ZHAO J P, LI X K, et al. Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries[J]. Energies,2021, 14(14):4187.

[6] XU J, CAI X, CAI S, et al. High-energy lithium-ion batteries:recent progress and a promising future in applications[J]. Energy&Environmental Materials, 2023, 6(5):64-69.

[7] SEO M, SONG Y, KIM J, et al. Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures[J]. Energy, 2021, 226:120301.

[8] JIANG Z Y, LI H B, QU Z G, et al. Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions[J]. International Journal of Hydrogen Energy,2022, 47(15):9428-9459.

[9] HUANG R, WEI G, WANG X, et al. A non-destructive heating method for lithium-ion batteries at low temperatures[J]. Renewable and Sustainable Energy Reviews, 2024, 205:114868.

[10]程志翔,曹伟,户波,等.储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J].储能科学与技术,2023,12(3):923-933.CHENG Zhixiang, CHAO Wei, HU Bo , et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology, 2023, 12(3):923–933.

[11] SPITTHOFF L, SHEARING P R, BURHEIM O S. Temperature,ageing and thermal management of lithium-ion batteries[J].Energies, 2021, 14(5):1248.

[12] ZHANG X, LI Z, LUO L, et al. A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022,238:121652.

[13]冯旭宁.车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D].北京:清华大学,2016.FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle:test, modeling and prevention[D]. Beijing:Tsinghua University, 2016.

[14]陈天雨.大容量锂离子电池热失控蔓延建模与仿真研究[D].北京:清华大学,2016.CHEN Tianyu. A study on the modeling and simulation of thermal runaway propagation of large-format lithium-ion batteries[D].Beijing:Tsinghua University, 2016.

[15]王莉,冯旭宁,薛钢,等.锂离子电池安全性评估的ARC测试方法和数据分析[J].储能科学与技术,2018,7(6):1261-1270..WANG Li, FENG Xuning, XUE Gang, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J].Energy Storage Science and Technology, 2018, 7(6):1261-1270.

[16]王震坡,袁昌贵,李晓宇.新能源汽车动力电池安全管理技术挑战与发展趋势分析[J].汽车工程,2020,42(12):1606-1620.WANG Zhengbo, YUAN Changgui, LI Xiaoyu, et al. An Analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles[J].Automotive Engineering, 2020, 42(12):1606-1620.

[17]金远,韩甜,韩鑫,等.锂离子电池热管理综述[J].储能科学与技术,2019,8(S1):23-30.JIN Yuan, HAN Tian, HAN Xing, et al. A review on thermal management techniques for lithium-ion battery[J]. Energy Storage Science and Technology, 2019, 8(S1):23-30.

[18]于仲安,陈可怡,张军令,等.动力电池散热技术研究进展[J].电气工程学报,2022,17(4):145-162.YU Zhongan, CHEN Keyi, ZHANG Junling, et al. Research progress of power battery cooling technology[J]. Journal of Electrical Engineering, 2022, 17(4):145-162.

[19] WU C, SUN Y, TANG H, et al. A review on the liquid cooling thermal management system of lithium-ion batteries[J]. Applied Energy, 2024, 375:124173.

[20] HE L, GU Z, ZHANG Y, et al. Review on thermal management of lithium-ion batteries for electric vehicles:Advances, challenges, and outlook[J]. Energy&Fuels, 2023, 37(7):4835-4857.

[21]朱信龙,王均毅,潘加爽,等.集装箱储能系统热管理系统的现状及发展[J].储能科学与技术,2022,11(1):107-118.ZHU Xinlong, WANG Junyi, PAN Jiashuang, et al. Present situation and development of thermal management system for battery energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1):107-118.

[22] RAJAT K, VARUN G. A study on thermal management system of lithium-ion batteries for electrical vehicles:A critical review[J].Journal of Energy Storage, 2023, 71:108025.

[23]刘霏霏,鲍荣清,程贤福,等.服役工况下车用锂离子动力电池散热方法综述[J].储能科学与技术,2021,10(6):2269-2282.LIU Feifei, BAO Rongqing, CHEN Fuxian, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology, 2021,10(6):2269-2282.

[24] AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198:117503.

[25] CHUNG Y, KIM M S. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles[J].Energy Conversion and Management, 2019, 196:105-116.

[26] SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentinechannel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 141:658-668.

[27]钟国彬,王羽平,王超,等.大容量锂离子电池储能系统的热管理技术现状分析[J].储能科学与技术,2018,7(2):203-210.ZHONG Guobin, WANG Yuping, WANG Chao,et al. The review of thermal management technology for large-scale lithium-ion battery energy storage system[J]. Energy Storage Science and Technology,2018, 7(2):203-210.

[28] YANG C, XI H, WANG M. Structure optimization of air cooling battery thermal management system based on lithium-ion battery[J].Journal Of Energy Storage, 2023, 59:106538.

[29] ZHAO G, WANG X, NEGNEVITSKY M, et al. An up-to-date review on the design improvement and optimization of the liquidcooling battery thermal management system for electric vehicles[J].Applied Thermal Engineering, 2023, 219:119626.

[30] CHEN K, WU W, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167:781-790.

[31] CHEN K, SONG M, WEI W, et al. Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement[J]. International Journal of Heat and Mass Transfer, 2019, 132:309-321.

[32] CHEN K, WANG S, SONG M, et al. Configuration optimization of battery pack in parallel air-cooled battery thermal management system using an optimization strategy[J]. Applied Thermal Engineering, 2017, 123:177-186.

[33]徐晓斌,徐业飞,张恒运,等.风冷电池模组热性能及成组效率的多目标优化[J].储能科学与技术, 2022, 11(2):553-562.XU Xiaobin, XU Yefei, ZHANG Hengyun, et al. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module[J]. Energy Storage Science and Technology,2022, 11(2):553-562.

[34]陈雅,范立云,李晶雪,等.二次流蛇形通道锂离子电池散热性能[J].储能科学与技术, 2023, 12(6):1880-1889..CHEN Ya, FAN Liyun, LI Jingxue, et al. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel[J].Energy Storage Science and Technology, 2023, 12(6):1880-1889.

[35] TANG Z, WANG S, LIU Z, et al. Numerical analysis of temperature uniformity of a liquid cooling battery module composed of heat-conducting blocks with gradient contact surface angles[J]. Applied Thermal Engineering, 2020, 178:115509.

[36]石博文,李明哲,叶季蕾.锂离子电池储能热管理技术应用现状分析[J].电源技术, 2023, 47(5):562-569.SHI Bowen, LI Mingzhe, YE Jilei. Analysis on application status of thermal management technology for lithium ion battery energy storage[J]. Chinese Journal of Power Sources, 2023, 47(5):562-569.

[37]瞿晓华,郭照亮,柳奔,等.车用动力电池不同冷却方式的模拟及实验研究[J].制冷学报, 2024, 45(1):101-109.QU Xiaohua, GUO Zhaoliang, LIU Ben, et al. Simulation analysis and experimental study of different cooling methods for automotive power batteries[J]. Journal of Refrigeration, 2024, 45(1):101-109.

[38]王圣,李新,蒋维,等.锂离子电池液冷热管理系统研究进展[J].消防科学与技术,2024,43(5):620-625.WANG sheng, LI xin, JIANG wei, et al. Research progress in thermal management system of lithium-ion battery on liquid cooling[J]. Fire Science and Technology, 2024, 43(5):620-625.

[39]李成宇,齐洪磊,宋金香,等.冷热环境下燃料电池客车热管理系统运行模式及特性研究[J].汽车工程学报,2024,14(4):733-744.LI Chengyu, QI Honglei, SONG Jinxiang, et al. Investigation of operation modes and characteristics of thermal management system in a fuel cell bus in cold and hot environments[J]. Chinese Journal of Automotive Engineering, 2024,14(4):733-744.

[40]雍加望,赵倩倩,冯能莲.质子交换膜燃料电池热管理系统建模及故障仿真[J].可再生能源,2024,42(3):308-316.YONG Jiawang, ZHAO Qianqian, FENG Nenglian. Modeling and malfunction simulation of thermal management system for proton exchange membrane fuel cells[J]. Renewable Energy Resources, 2024,42(3):308-316.

[41]刘书琴,王小燕,张振东,等.锂离子电池组液冷式热管理系统的设计及优化[J].储能科学与技术,2023,12(7):2155-2165.LIU Shuqin, WANG Xiaoyan, ZHANG Zhendong, et al. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2023, 12(7):2155-2165.

Basic Information:

DOI:10.19944/j.eptep.1674-8069.2025.02.001

China Classification Code:TM912;TK124

Citation Information:

[1]叶兴联,钟志韬,张楚城等.储能电池模组风冷和液冷换热特性对比[J].电力科技与环保,2025,41(02):173-182.DOI:10.19944/j.eptep.1674-8069.2025.02.001.

Fund Information:

国家自然科学基金项目(12072071); 福建龙净环保股份有限公司科技基金开发项目(202404-1)

quote

GB/T 7714-2015
MLA
APA
Search Advanced Search